Implicit Neural Representation for MRI Parallel Imaging Reconstruction
- URL: http://arxiv.org/abs/2309.06067v6
- Date: Wed, 10 Apr 2024 13:17:52 GMT
- Title: Implicit Neural Representation for MRI Parallel Imaging Reconstruction
- Authors: Hao Li, Yusheng Zhou, Jianan Liu, Xiling Liu, Tao Huang, Zhihan Lv, Weidong Cai,
- Abstract summary: Implicit neural representation (INR) has emerged as a promising deep learning technique.
We propose a novel MRI reconstruction method that uses INR.
Our approach represents reconstructed fully-sampled images as functions of voxel coordinates and prior feature vectors from undersampled images.
- Score: 34.936667344452964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) usually faces lengthy acquisition times, prompting the exploration of strategies such as parallel imaging (PI) to alleviate this problem by periodically skipping specific K-space lines and subsequently reconstructing high-quality images from the undersampled K-space. Implicit neural representation (INR) has recently emerged as a promising deep learning technique, characterizing objects as continuous functions of spatial coordinates typically parameterized by a multilayer perceptron (MLP). In this study, we propose a novel MRI PI reconstruction method that uses INR. Our approach represents reconstructed fully-sampled images as functions of voxel coordinates and prior feature vectors from undersampled images, addressing the generalization challenges of INR. Specifically, we introduce a scale-embedded encoder to generate scale-independent, voxel-specific features from MR images across various undersampling scales. These features are then concatenated with coordinate vectors to reconstruct fully-sampled MR images, facilitating multiple-scale reconstructions. To evaluate our method's performance, we conducted experiments using publicly available MRI datasets, comparing it with alternative reconstruction techniques. Our quantitative assessment demonstrates the superiority of our proposed method.
Related papers
- NeRF Solves Undersampled MRI Reconstruction [1.3597551064547502]
This article presents a novel undersampled magnetic resonance imaging (MRI) technique that leverages the concept of Neural Radiance Field (NeRF)
With radial undersampling, the corresponding imaging problem can be reformulated into an image modeling task from sparse-view rendered data.
A multi-layer perceptron, which is designed to output an image intensity from a spatial coordinate, learns the MR physics-driven rendering relation between given measurement data and desired image.
arXiv Detail & Related papers (2024-02-20T18:37:42Z) - A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
implicit neural representation (INR) has emerged as a new deep learning paradigm for learning the internal continuity of an object.
The proposed method outperforms existing methods by suppressing the aliasing artifacts and noise.
The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.
arXiv Detail & Related papers (2022-10-19T10:16:03Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
Deep neural networks have been applied to reconstruct undersampled k-space data and have shown improved reconstruction performance.
This work proposes a novel framework to learn k-space sampling trajectories by considering it as an Ordinary Differential Equation (ODE) problem.
Experiments were conducted on different in-viv datasets (textite.g., brain and knee images) acquired with different sequences.
arXiv Detail & Related papers (2022-04-05T20:28:42Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Undersampled MRI Reconstruction with Side Information-Guided
Normalisation [20.28262806301981]
We investigate the use of appearance-related side information as normalisation parameters in a convolutional neural network (CNN) to improve undersampled MRI reconstruction.
Specifically, a Side Information-Guided Normalisation (SIGN) module, containing only few layers, is proposed to efficiently encode the side information and output the normalisation parameters.
arXiv Detail & Related papers (2022-03-07T08:04:08Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Joint reconstruction and bias field correction for undersampled MR
imaging [7.409376558513677]
Undersampling the k-space in MRI allows saving precious acquisition time, yet results in an ill-posed inversion problem.
Deep learning schemes are susceptible to differences between the training data and the image to be reconstructed at test time.
In this work, we address the sensitivity of the reconstruction problem to the bias field and propose to model it explicitly in the reconstruction.
arXiv Detail & Related papers (2020-07-26T12:58:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.