論文の概要: Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction
- arxiv url: http://arxiv.org/abs/2411.13982v1
- Date: Thu, 21 Nov 2024 09:47:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:20:21.542034
- Title: Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction
- Title(参考訳): セマンティック・ディスラプションのない安全:文脈保存型デュアルラテント再構成による編集不要な安全な画像生成
- Authors: Jordan Vice, Naveed Akhtar, Richard Hartley, Ajmal Mian,
- Abstract要約: マルチモーダル生成モデルのトレーニングは、ユーザを有害で安全でない、議論の余地のない、あるいは文化的に不適切なアウトプットに晒すことができる。
安全コンテクストの埋め込みと、より安全な画像を生成するための二重再構成プロセスを活用するモジュール型動的ソリューションを提案する。
我々は、モデル安全性の制御可能なバリエーションを提供しながら、安全な画像生成ベンチマークの最先端結果を達成する。
- 参考スコア(独自算出の注目度): 49.60774626839712
- License:
- Abstract: Training multimodal generative models on large, uncurated datasets can result in users being exposed to harmful, unsafe and controversial or culturally-inappropriate outputs. While model editing has been proposed to remove or filter undesirable concepts in embedding and latent spaces, it can inadvertently damage learned manifolds, distorting concepts in close semantic proximity. We identify limitations in current model editing techniques, showing that even benign, proximal concepts may become misaligned. To address the need for safe content generation, we propose a modular, dynamic solution that leverages safety-context embeddings and a dual reconstruction process using tunable weighted summation in the latent space to generate safer images. Our method preserves global context without compromising the structural integrity of the learned manifolds. We achieve state-of-the-art results on safe image generation benchmarks, while offering controllable variation of model safety. We identify trade-offs between safety and censorship, which presents a necessary perspective in the development of ethical AI models. We will release our code. Keywords: Text-to-Image Models, Generative AI, Safety, Reliability, Model Editing
- Abstract(参考訳): 大規模で未処理のデータセットでマルチモーダル生成モデルをトレーニングすることで、ユーザは有害で安全でない、議論の余地のない、文化的に不適切なアウトプットにさらされる可能性がある。
埋め込み空間や潜伏空間における望ましくない概念を除去あるいはフィルタリングするためにモデル編集が提案されているが、学習された多様体に不注意にダメージを与え、密接な意味的近接において概念を歪ませることができる。
我々は現在のモデル編集技法の限界を特定し、良質で近性的な概念が相反する可能性があることを示す。
安全なコンテンツ生成の必要性に対処するために,安全コンテクストの埋め込みを活用するモジュール型動的解法と,より安全な画像を生成するために潜時空間の重み付け和を用いた2重再構築法を提案する。
本手法は,学習多様体の構造的整合性を損なうことなく,大域的文脈を保存する。
我々は、モデル安全性の制御可能なバリエーションを提供しながら、安全な画像生成ベンチマークの最先端結果を達成する。
安全と検閲のトレードオフを特定し、倫理的AIモデルの開発に必要な視点を提示します。
私たちはコードを公開します。
キーワード:テキスト・ツー・イメージモデル、生成AI、安全性、信頼性、モデル編集
関連論文リスト
- ShieldDiff: Suppressing Sexual Content Generation from Diffusion Models through Reinforcement Learning [7.099258248662009]
テキスト・ツー・イメージ(T2I)モデルは、不快な内容の安全でない画像を生成する可能性がある。
我々の研究では、T2IモデルからNSFW(職場では安全ではない)コンテンツ生成を排除することに重点を置いています。
本稿では,CLIP(Contrastive Language- Image Pre-Trening)とヌード報酬(nudity rewards)から構成される独自の報酬関数を提案する。
論文 参考訳(メタデータ) (2024-10-04T19:37:56Z) - EIUP: A Training-Free Approach to Erase Non-Compliant Concepts Conditioned on Implicit Unsafe Prompts [32.590822043053734]
非有毒なテキストは、暗黙の安全でないプロンプトと呼ばれる非準拠のイメージを生成するリスクを伴っている。
我々は、非準拠の概念を消去プロンプトに組み込む、単純で効果的なアプローチを提案する。
本手法は,画像の忠実度を高いスコアで評価しながら,優れた消去効果を示す。
論文 参考訳(メタデータ) (2024-08-02T05:17:14Z) - Direct Unlearning Optimization for Robust and Safe Text-to-Image Models [29.866192834825572]
モデルが潜在的に有害なコンテンツを生成する能力を取り除くために、未学習の技術が開発されている。
これらの手法は敵の攻撃によって容易に回避され、生成した画像の安全性を確保するには信頼性が低い。
T2IモデルからNot Safe For Work(NSFW)コンテンツを除去するための新しいフレームワークであるDirect Unlearning Optimization (DUO)を提案する。
論文 参考訳(メタデータ) (2024-07-17T08:19:11Z) - Reliable and Efficient Concept Erasure of Text-to-Image Diffusion Models [76.39651111467832]
本稿では,Reliable and Efficient Concept Erasure (RECE)を提案する。
派生した埋め込みによって表現される不適切なコンテンツを緩和するために、RECEはそれらをクロスアテンション層における無害な概念と整合させる。
新たな表現埋め込みの導出と消去を反復的に行い、不適切な概念の徹底的な消去を実現する。
論文 参考訳(メタデータ) (2024-07-17T08:04:28Z) - Latent Guard: a Safety Framework for Text-to-image Generation [64.49596711025993]
既存の安全対策は、容易に回避できるテキストブラックリストや有害なコンテンツ分類に基づいている。
テキスト・ツー・イメージ生成の安全性向上を目的としたフレームワークであるLatent Guardを提案する。
ブラックリストベースのアプローチにインスパイアされたLatent Guardは、T2Iモデルのテキストエンコーダの上に潜在空間を学習し、有害な概念の存在を確認することができる。
論文 参考訳(メタデータ) (2024-04-11T17:59:52Z) - Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models [42.19184265811366]
本研究では,NSFW入力に対する感度を低下させることにより,視覚・言語モデルの安全性を高める新しいアプローチを提案する。
安全な文と安全でない文の変換を訓練した大規模言語モデルから得られた合成データに対して,CLIPモデルを微調整することで,これを実現できることを示す。
論文 参考訳(メタデータ) (2023-11-27T19:02:17Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bellは、T2I拡散モデルのためのモデルに依存しないレッドチームツールである。
これは、不適切なコンテンツの生成に対応する拡散モデルに対する問題的プロンプトを特定する。
この結果から,安全プロンプトベンチマークの操作により,既存の安全メカニズムを回避できると考えられるプロンプトを変換できることが示唆された。
論文 参考訳(メタデータ) (2023-10-16T02:11:20Z) - Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion
Models [63.20512617502273]
テキストから画像への拡散モデルにおいて,問題のあるコンテンツ生成を防止するため,SDDと呼ばれる手法を提案する。
本手法は,画像の全体的な品質を劣化させることなく,生成した画像から有害なコンテンツをはるかに多く除去する。
論文 参考訳(メタデータ) (2023-07-12T07:48:29Z) - Forget-Me-Not: Learning to Forget in Text-to-Image Diffusion Models [79.50701155336198]
textbfForget-Me-Notは、適切に設定されたテキスト・ツー・イメージモデルから、指定されたID、オブジェクト、スタイルを30秒で安全に削除するように設計されている。
我々は,Forget-Me-Notが,モデルの性能を他の概念に保ちながら,ターゲットとなる概念を効果的に排除できることを実証した。
また、Stable Diffusionの軽量モデルパッチとして適応することができ、コンセプト操作と便利な配布を可能にしている。
論文 参考訳(メタデータ) (2023-03-30T17:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。