論文の概要: Modeling Supply and Demand in Public Transportation Systems
- arxiv url: http://arxiv.org/abs/2309.06299v1
- Date: Tue, 12 Sep 2023 15:05:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-13 12:33:13.611021
- Title: Modeling Supply and Demand in Public Transportation Systems
- Title(参考訳): 公共交通システムにおける需給のモデル化
- Authors: Miranda Bihler, Hala Nelson, Erin Okey, Noe Reyes Rivas, John Webb,
Anna White
- Abstract要約: ハリソンバーグ公共交通局(HDPT)は、そのデータを活用して、事業の効率性と効率性を向上させることを目指している。
我々は、部門がサービスのギャップを特定するのに役立つ2つの供給と需要モデルを構築します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Harrisonburg Department of Public Transportation (HDPT) aims to leverage
their data to improve the efficiency and effectiveness of their operations. We
construct two supply and demand models that help the department identify gaps
in their service. The models take many variables into account, including the
way that the HDPT reports to the federal government and the areas with the most
vulnerable populations in Harrisonburg City. We employ data analysis and
machine learning techniques to make our predictions.
- Abstract(参考訳): ハリソンバーグ公共交通局(HDPT)は、そのデータを活用して、事業の効率性と効率性を向上させることを目指している。
我々は、部門がサービスのギャップを特定するのに役立つ2つの供給需要モデルを構築します。
このモデルは、HDPTが連邦政府に報告する方法や、ハリソンバーグ市で最も脆弱な地域など、多くの変数を考慮に入れている。
予測にはデータ分析と機械学習技術を採用しています。
関連論文リスト
- Predicting travel demand of a bike sharing system using graph convolutional neural networks [0.0]
本研究は,自転車共有システムにおける旅行需要の予測に焦点を当てた。
ゲートグラフ畳み込みニューラルネットワークと呼ばれる新しいハイブリッドディープラーニングモデルが導入された。
軌跡データ、気象データ、アクセスデータを統合し、ゲートグラフ畳み込みネットワークを活用することにより、旅行需要予測の精度を大幅に向上する。
論文 参考訳(メタデータ) (2024-08-18T00:24:30Z) - Predicting Citi Bike Demand Evolution Using Dynamic Graphs [81.12174591442479]
ニューヨーク市のCiti Bikeデータセットにおける自転車需要予測にグラフニューラルネットワークモデルを適用した。
本稿では,ニューヨーク市のCiti Bikeデータセットにおける自転車需要予測にグラフニューラルネットワークモデルを適用しようとする。
論文 参考訳(メタデータ) (2022-12-18T21:43:27Z) - A Dynamic Model for Bus Arrival Time Estimation based on Spatial
Patterns using Machine Learning [1.2891210250935146]
限られたデータセットを用いて到着時刻を予測するため,バス到着予測モデルを提案する。
インド・トゥムクル市の交通路の一つ、トゥムクル(Tumakuru)が選択され、2つの空間パターンに分けられる。
前回の旅行情報と機械学習モデルを用いてバス到着時刻を動的に予測するモデルを開発し、下流のバス停で到着時刻を推定する。
論文 参考訳(メタデータ) (2022-10-03T06:35:03Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
本稿では,原位置需要予測(CMOD)のための連続時間および多段階動的グラフ表現学習法を提案する。
状態ベクトルは、過去のトランザクション情報を保持し、最近発生したトランザクションに従って継続的に更新される。
北京地下鉄とニューヨークタクシーの2つの実世界のデータセットを用いて実験を行い、そのモデルが最先端のアプローチに対して優れていることを実証した。
論文 参考訳(メタデータ) (2022-06-30T03:37:50Z) - Federated Learning with Correlated Data: Taming the Tail for Age-Optimal
Industrial IoT [55.62157530259969]
本稿では,ピークAoI要求に基づくセンサの送信電力最小化と待ち時間に対する確率的制約について検討する。
本稿では,センサのトレーニングデータ間の相関を考慮した局所モデル選択手法を提案する。
数値計算の結果,送信電力,ピークAoI,遅延尾部分布のトレードオフが示された。
論文 参考訳(メタデータ) (2021-08-17T08:38:31Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Online Metro Origin-Destination Prediction via Heterogeneous Information
Aggregation [99.54200992904721]
我々は、ODとDOの進化パターンを共同で学習するために、HIAM(Heterogeneous Information Aggregation Machine)と呼ばれるニューラルネットワークモジュールを提案する。
ODモデリングブランチは、未完成な順序の潜在的な目的地を明示的に推定し、不完全OD行列の情報を補完する。
DOモデリングブランチは、DO行列を入力として、DOライダーシップの時空間分布をキャプチャする。
提案したHIAMに基づいて,将来のODおよびDOライダーを同時に予測する統合Seq2Seqネットワークを開発した。
論文 参考訳(メタデータ) (2021-07-02T10:11:51Z) - Interpretable Data-Driven Demand Modelling for On-Demand Transit
Services [6.982614422666432]
本研究では,DAレベルにおけるオンデマンド交通(ODT)サービスのための旅行・流通モデルを開発した。
その結果, 商業・工業用地利用型と高密度住宅用地利用型との間には, より高い旅行分布レベルが期待できることがわかった。
論文 参考訳(メタデータ) (2020-10-27T20:48:10Z) - Crowding Prediction of In-Situ Metro Passengers Using Smart Card Data [11.781685156308475]
本稿では,閉鎖型地下鉄システム内の乗客密度を推定する統計モデルを提案する。
予測結果に基づいて,将来の時刻の乗客密度の正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-09-07T04:07:37Z) - Extracting Spatiotemporal Demand for Public Transit from Mobility Data [0.0]
都市人口の変化は、交通サービスの効率的な管理にいくつかの課題をもたらす。
都市における公共交通機関の需要を簡易に推定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-05T10:21:31Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。