InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation
- URL: http://arxiv.org/abs/2309.06380v2
- Date: Sat, 23 Mar 2024 14:22:39 GMT
- Title: InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation
- Authors: Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, Qiang Liu,
- Abstract summary: We propose a novel text-conditioned pipeline to turn Stable Diffusion (SD) into an ultra-fast one-step model.
We create the first one-step diffusion-based text-to-image generator with SD-level image quality, achieving an FID of $23.3$ on MS COCO 2017-5k.
- Score: 33.70116170511312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have revolutionized text-to-image generation with its exceptional quality and creativity. However, its multi-step sampling process is known to be slow, often requiring tens of inference steps to obtain satisfactory results. Previous attempts to improve its sampling speed and reduce computational costs through distillation have been unsuccessful in achieving a functional one-step model. In this paper, we explore a recent method called Rectified Flow, which, thus far, has only been applied to small datasets. The core of Rectified Flow lies in its \emph{reflow} procedure, which straightens the trajectories of probability flows, refines the coupling between noises and images, and facilitates the distillation process with student models. We propose a novel text-conditioned pipeline to turn Stable Diffusion (SD) into an ultra-fast one-step model, in which we find reflow plays a critical role in improving the assignment between noise and images. Leveraging our new pipeline, we create, to the best of our knowledge, the first one-step diffusion-based text-to-image generator with SD-level image quality, achieving an FID (Frechet Inception Distance) of $23.3$ on MS COCO 2017-5k, surpassing the previous state-of-the-art technique, progressive distillation, by a significant margin ($37.2$ $\rightarrow$ $23.3$ in FID). By utilizing an expanded network with 1.7B parameters, we further improve the FID to $22.4$. We call our one-step models \emph{InstaFlow}. On MS COCO 2014-30k, InstaFlow yields an FID of $13.1$ in just $0.09$ second, the best in $\leq 0.1$ second regime, outperforming the recent StyleGAN-T ($13.9$ in $0.1$ second). Notably, the training of InstaFlow only costs 199 A100 GPU days. Codes and pre-trained models are available at \url{github.com/gnobitab/InstaFlow}.
Related papers
- Simple ReFlow: Improved Techniques for Fast Flow Models [68.32300636049008]
Diffusion and flow-matching models achieve remarkable generative performance but at the cost of many sampling steps.
We propose seven improvements for training dynamics, learning and inference.
We achieve state-of-the-art FID scores (without / with guidance, resp.) for fast generation via neural ODEs.
arXiv Detail & Related papers (2024-10-10T11:00:55Z) - FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner [70.90505084288057]
Flow-based models tend to produce a straighter sampling trajectory during the sampling process.
We introduce several techniques including a pseudo corrector and sample-aware compilation to further reduce inference time.
FlowTurbo reaches an FID of 2.12 on ImageNet with 100 (ms / img) and FID of 3.93 with 38 (ms / img)
arXiv Detail & Related papers (2024-09-26T17:59:51Z) - Improving the Training of Rectified Flows [14.652876697052156]
Diffusion models have shown great promise for image and video generation, but sampling from state-of-the-art models requires expensive numerical integration of a generative ODE.
One approach for tackling this problem is rectified flows, which iteratively learn smooth ODE paths that are less susceptible to truncation error.
We propose improved techniques for training rectified flows, allowing them to compete with emphknowledge distillation methods even in the low NFE setting.
Our improved rectified flow outperforms the state-of-the-art distillation methods such as consistency distillation and progressive distillation in both one-step and two
arXiv Detail & Related papers (2024-05-30T17:56:04Z) - Boundary-aware Decoupled Flow Networks for Realistic Extreme Rescaling [49.215957313126324]
Recently developed generative methods, including invertible rescaling network (IRN) based and generative adversarial network (GAN) based methods, have demonstrated exceptional performance in image rescaling.
However, IRN-based methods tend to produce over-smoothed results, while GAN-based methods easily generate fake details.
We propose Boundary-aware Decoupled Flow Networks (BDFlow) to generate realistic and visually pleasing results.
arXiv Detail & Related papers (2024-05-05T14:05:33Z) - SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation [1.5892730797514436]
Text-to-image diffusion models often suffer from slow iterative sampling processes.
We present a novel image-free distillation scheme named $textbfSwiftBrush$.
SwiftBrush achieves an FID score of $textbf16.67$ and a CLIP score of $textbf0.29$ on the COCO-30K benchmark.
arXiv Detail & Related papers (2023-12-08T18:44:09Z) - ACT-Diffusion: Efficient Adversarial Consistency Training for One-step Diffusion Models [59.90959789767886]
We show that optimizing consistency training loss minimizes the Wasserstein distance between target and generated distributions.
By incorporating a discriminator into the consistency training framework, our method achieves improved FID scores on CIFAR10 and ImageNet 64$times$64 and LSUN Cat 256$times$256 datasets.
arXiv Detail & Related papers (2023-11-23T16:49:06Z) - ZeroFlow: Scalable Scene Flow via Distillation [66.70820145266029]
Scene flow estimation is the task of describing the 3D motion field between temporally successive point clouds.
State-of-the-art methods use strong priors and test-time optimization techniques, but require on the order of tens of seconds to process full-size point clouds.
We propose Scene Flow via Distillation, a simple, scalable distillation framework that uses a label-free optimization method to produce pseudo-labels to supervise a feedforward model.
arXiv Detail & Related papers (2023-05-17T17:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.