論文の概要: Machine Translation Models Stand Strong in the Face of Adversarial
Attacks
- arxiv url: http://arxiv.org/abs/2309.06527v1
- Date: Sun, 10 Sep 2023 11:22:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 16:30:12.651358
- Title: Machine Translation Models Stand Strong in the Face of Adversarial
Attacks
- Title(参考訳): 機械翻訳モデルは、敵対的な攻撃に直面して強く立つ
- Authors: Pavel Burnyshev, Elizaveta Kostenok, Alexey Zaytsev
- Abstract要約: 本研究は,シークエンス・ツー・シークエンス(seq2seq)モデル,特に機械翻訳モデルに対する敵攻撃の影響に焦点を当てた。
我々は、基本的なテキスト摂動と、勾配に基づく攻撃のようなより高度な戦略を取り入れたアルゴリズムを導入する。
- 参考スコア(独自算出の注目度): 2.6862667248315386
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Adversarial attacks expose vulnerabilities of deep learning models by
introducing minor perturbations to the input, which lead to substantial
alterations in the output. Our research focuses on the impact of such
adversarial attacks on sequence-to-sequence (seq2seq) models, specifically
machine translation models. We introduce algorithms that incorporate basic text
perturbation heuristics and more advanced strategies, such as the
gradient-based attack, which utilizes a differentiable approximation of the
inherently non-differentiable translation metric. Through our investigation, we
provide evidence that machine translation models display robustness displayed
robustness against best performed known adversarial attacks, as the degree of
perturbation in the output is directly proportional to the perturbation in the
input. However, among underdogs, our attacks outperform alternatives, providing
the best relative performance. Another strong candidate is an attack based on
mixing of individual characters.
- Abstract(参考訳): 敵対的攻撃は、入力に小さな摂動を導入することによってディープラーニングモデルの脆弱性を露呈し、出力にかなりの変化をもたらす。
本研究では,このような攻撃がsequence-to-sequence(seq2seq)モデル,特に機械翻訳モデルに与える影響に注目した。
本稿では, 基本文摂動ヒューリスティックと, 微分不可能な翻訳計量の微分可能近似を利用する勾配攻撃のような, より高度な戦略を取り入れたアルゴリズムを提案する。
本研究により,機械翻訳モデルでは,入力中の摂動の程度が直接的に入力の摂動に比例するので,最もよく実行される敵攻撃に対して堅牢性を示すことを示す。
しかし、アンダードッグの間では、我々の攻撃は代替品よりも優れており、最高の相対的パフォーマンスを提供する。
もうひとつの強い候補は、個々の文字の混合に基づく攻撃である。
関連論文リスト
- Adversarial Attacks Against Uncertainty Quantification [10.655660123083607]
この研究は、攻撃者が依然として不確実性推定を操作することに興味を持つ異なる敵シナリオに焦点を当てる。
特に、アウトプットが下流モジュールや人間のオペレータによって消費される場合、機械学習モデルの使用を損なうことが目標である。
論文 参考訳(メタデータ) (2023-09-19T12:54:09Z) - A Classification-Guided Approach for Adversarial Attacks against Neural
Machine Translation [66.58025084857556]
我々は,分類器によって誘導されるNMTシステムに対する新たな敵攻撃フレームワークであるACTを紹介する。
本攻撃では,翻訳が本来の翻訳と異なるクラスに属する意味保存的敵の例を作成することを目的としている。
攻撃に対するNMTモデルの堅牢性を評価するため,既存のブラックボックス単語置換攻撃の強化を提案する。
論文 参考訳(メタデータ) (2023-08-29T12:12:53Z) - In and Out-of-Domain Text Adversarial Robustness via Label Smoothing [64.66809713499576]
多様なNLPタスクの基本モデルにおいて,ラベルの平滑化戦略によって提供される対角的ロバスト性について検討する。
実験の結果,ラベルのスムース化は,BERTなどの事前学習モデルにおいて,様々な攻撃に対して,逆方向の堅牢性を大幅に向上させることがわかった。
また,予測信頼度とロバスト性の関係を解析し,ラベルの平滑化が敵の例に対する過度な信頼誤差を減少させることを示した。
論文 参考訳(メタデータ) (2022-12-20T14:06:50Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - A Differentiable Language Model Adversarial Attack on Text Classifiers [10.658675415759697]
自然言語処理のための新しいブラックボックス文レベルアタックを提案する。
本手法は,事前学習した言語モデルを微調整して,逆例を生成する。
提案手法は, 計算量と人的評価の両方において, 多様なNLP問題において, 競合相手よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-23T14:43:13Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Evaluating Deception Detection Model Robustness To Linguistic Variation [10.131671217810581]
認知ニュース検出の設定における言語的変化に対するモデル堅牢性の解析を提案する。
2つの予測タスクを検討し,3つの最先端組込みを比較して,モデル性能の一貫した傾向を強調する。
キャラクタあるいは混合アンサンブルモデルが最も効果的な防御であり,キャラクタ摂動に基づく攻撃戦術がより成功していることがわかった。
論文 参考訳(メタデータ) (2021-04-23T17:25:38Z) - Extending Adversarial Attacks to Produce Adversarial Class Probability
Distributions [1.439518478021091]
高い不正率を維持しながら,クラスに対する確率分布を近似できることを示す。
この結果から, クラスに対する確率分布は, 高い不正率を維持しつつ, 密に近似できることが示唆された。
論文 参考訳(メタデータ) (2020-04-14T09:39:02Z) - Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial
Perturbations [65.05561023880351]
敵の例は誤分類を引き起こすために作られた悪意のある入力である。
本稿では, 相補的障害モード, 不変性に基づく逆数例について検討する。
感度に基づく攻撃に対する防御は、不変性に基づく攻撃に対するモデルの精度を積極的に損なうことを示す。
論文 参考訳(メタデータ) (2020-02-11T18:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。