論文の概要: Generalizable Neural Fields as Partially Observed Neural Processes
- arxiv url: http://arxiv.org/abs/2309.06660v1
- Date: Wed, 13 Sep 2023 01:22:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 15:52:44.420311
- Title: Generalizable Neural Fields as Partially Observed Neural Processes
- Title(参考訳): 部分観察型ニューラルプロセスとしての一般化可能なニューラルフィールド
- Authors: Jeffrey Gu, Kuan-Chieh Wang, Serena Yeung
- Abstract要約: 本稿では,ニューラル表現の大規模トレーニングを部分的に観察されたニューラルプロセスフレームワークの一部として考える新しいパラダイムを提案する。
このアプローチは、最先端の勾配に基づくメタラーニングアプローチとハイパーネットワークアプローチの両方より優れていることを実証する。
- 参考スコア(独自算出の注目度): 16.202109517569145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural fields, which represent signals as a function parameterized by a
neural network, are a promising alternative to traditional discrete vector or
grid-based representations. Compared to discrete representations, neural
representations both scale well with increasing resolution, are continuous, and
can be many-times differentiable. However, given a dataset of signals that we
would like to represent, having to optimize a separate neural field for each
signal is inefficient, and cannot capitalize on shared information or
structures among signals. Existing generalization methods view this as a
meta-learning problem and employ gradient-based meta-learning to learn an
initialization which is then fine-tuned with test-time optimization, or learn
hypernetworks to produce the weights of a neural field. We instead propose a
new paradigm that views the large-scale training of neural representations as a
part of a partially-observed neural process framework, and leverage neural
process algorithms to solve this task. We demonstrate that this approach
outperforms both state-of-the-art gradient-based meta-learning approaches and
hypernetwork approaches.
- Abstract(参考訳): ニューラルネットワークによってパラメータ化された関数として信号を表すニューラルフィールドは、従来の離散ベクトルやグリッドベースの表現に代わる有望な選択肢である。
離散表現と比較すると、ニューラル表現は解像度が上がるにつれて大きくなり、連続であり、何度も微分できる。
しかしながら、私たちが表現したい信号のデータセットを考えると、各信号に対して別々のニューラルネットワークを最適化する必要は非効率であり、信号間の共有情報や構造を活用できない。
既存の一般化手法では、これをメタラーニング問題とみなし、勾配に基づくメタラーニングを使用して初期化を学び、テスト時間最適化に精通した上で、ハイパーネットワークを学び、ニューラルネットワークの重みを生成する。
代わりに、神経表現の大規模トレーニングを部分的に観察されたニューラルプロセスフレームワークの一部として見る新しいパラダイムを提案し、この問題を解決するためにニューラルプロセスアルゴリズムを活用する。
このアプローチは、最先端の勾配に基づくメタラーニングアプローチとハイパーネットワークアプローチの両方より優れていることを示す。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Random Weight Factorization Improves the Training of Continuous Neural
Representations [1.911678487931003]
連続神経表現は、信号の古典的な離散化表現に代わる強力で柔軟な代替物として登場した。
従来の線形層をパラメータ化・初期化するための単純なドロップイン置換法としてランダムウェイト係数化を提案する。
ネットワーク内の各ニューロンが、自身の自己適応学習率を用いて学習できるように、この因子化が基盤となる損失状況をどのように変化させるかを示す。
論文 参考訳(メタデータ) (2022-10-03T23:48:48Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
科学と工学において、モデリング(英: modeling)とは、内部プロセスが不透明な複雑なシステムを理解するために用いられる方法論である。
本稿では,ガウス過程を用いたニューラルネットワークの代理モデルのクラスを構築する。
提案手法は,ニューラルネットワークのスペクトルバイアスに関連する既存の現象を捕捉し,サロゲートモデルを用いて現実的な問題を解決することを実証する。
論文 参考訳(メタデータ) (2022-08-11T20:17:02Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
入射神経表現は、一般的な信号を表す新しい道である。
現在のアプローチは、多数の信号やデータセットに対してスケールすることが難しい。
メタ学習型スパースニューラル表現は,高密度メタ学習モデルよりもはるかに少ない損失が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T18:02:53Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
ニューラルな暗示表現で形状を一般化することは、各関数空間上の学習先行値に比例する。
形状空間の学習をメタラーニング問題として定式化し、勾配に基づくメタラーニングアルゴリズムを利用してこの課題を解決する。
論文 参考訳(メタデータ) (2020-06-17T05:14:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。