論文の概要: Topology-inspired Cross-domain Network for Developmental Cervical
Stenosis Quantification
- arxiv url: http://arxiv.org/abs/2309.06825v2
- Date: Mon, 18 Sep 2023 06:51:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 21:56:22.903669
- Title: Topology-inspired Cross-domain Network for Developmental Cervical
Stenosis Quantification
- Title(参考訳): 頚部脊柱管狭窄定量化のためのトポロジーインスパイアクロスドメインネットワーク
- Authors: Zhenxi Zhang, Yanyang Wang, Yao Wu and Weifei Wu
- Abstract要約: 頚部脊柱管狭窄症(DCS)の定量診断は頚部脊柱管狭窄のスクリーニングに重要である。
ディープキーポイントローカライゼーションネットワークは、座標または画像領域で実装することができる。
トポロジーにインスパイアされたクロスドメインネットワーク(TCN)は、クロスドメイン方式で異常な構造を制限することを提案した。
- 参考スコア(独自算出の注目度): 4.426771138038866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developmental Canal Stenosis (DCS) quantification is crucial in cervical
spondylosis screening. Compared with quantifying DCS manually, a more efficient
and time-saving manner is provided by deep keypoint localization networks,
which can be implemented in either the coordinate or the image domain. However,
the vertebral visualization features often lead to abnormal topological
structures during keypoint localization, including keypoint distortion with
edges and weakly connected structures, which cannot be fully suppressed in
either the coordinate or image domain alone. To overcome this limitation, a
keypoint-edge and a reparameterization modules are utilized to restrict these
abnormal structures in a cross-domain manner. The keypoint-edge constraint
module restricts the keypoints on the edges of vertebrae, which ensures that
the distribution pattern of keypoint coordinates is consistent with those for
DCS quantification. And the reparameterization module constrains the weakly
connected structures in image-domain heatmaps with coordinates combined.
Moreover, the cross-domain network improves spatial generalization by utilizing
heatmaps and incorporating coordinates for accurate localization, which avoids
the trade-off between these two properties in an individual domain.
Comprehensive results of distinct quantification tasks show the superiority and
generability of the proposed Topology-inspired Cross-domain Network (TCN)
compared with other competing localization methods.
- Abstract(参考訳): 頚部脊柱管狭窄症(DCS)の定量化は頚椎症スクリーニングにおいて重要である。
手動でDCSを定量化するのと比較すると、より効率的でタイムセーブな方法はディープキーポイントローカライゼーションネットワークによって提供され、座標または画像領域で実装できる。
しかし、脊椎の視覚的特徴はしばしばキーポイントの局在中に異常なトポロジカルな構造をもたらし、エッジによるキーポイント歪みや弱い連結構造は座標領域と画像領域の両方で完全に抑制できない。
この制限を克服するために、キーポイントエッジと再パラメータ化モジュールを使用して、これらの異常構造をドメイン横断的に制限する。
キーポイントエッジ制約モジュールは脊椎の縁にあるキーポイントを制限し、キーポイント座標の分布パターンがDCS量子化の値と一致していることを保証する。
再パラメータ化モジュールは、座標を組み合わせた画像領域のヒートマップ内の弱結合構造を制約する。
さらに、クロスドメインネットワークは、ヒートマップを利用して空間一般化を改善し、正確な位置決めのための座標を導入し、個々の領域におけるこれらの2つの特性間のトレードオフを回避する。
異なる定量化タスクの包括的結果から,提案するトポロジーに触発されたクロスドメインネットワーク (tcn) は,他のローカライズ手法と比較して優越性と生成性を示した。
関連論文リスト
- Joint Identifiability of Cross-Domain Recommendation via Hierarchical Subspace Disentanglement [19.29182848154183]
CDR(Cross-Domain Recommendation)はドメイン間の効果的な知識伝達を実現する。
CDRは、ユーザ表現を2つのドメインにまたがる共同分布として記述するが、これらの方法は、その共同識別可能性を考慮していない。
本稿では,階層的部分空間のアンタングル化手法を提案し,ドメイン間結合分布の結合識別可能性について検討する。
論文 参考訳(メタデータ) (2024-04-06T03:11:31Z) - Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition [0.0]
本稿では,マルチスケール空間時間自己注意(MSST)-GCNという自己注意型GCNハイブリッドモデルを提案する。
適応トポロジを持つ空間自己保持モジュールを用いて、異なる身体部分間のフレーム内相互作用を理解するとともに、時間的自己保持モジュールを用いてノードのフレーム間の相関関係を調べる。
論文 参考訳(メタデータ) (2024-04-03T10:25:45Z) - DCN-T: Dual Context Network with Transformer for Hyperspectral Image
Classification [109.09061514799413]
複雑な撮像条件による空間変動のため,HSI分類は困難である。
本稿では,HSIを高品質な三スペクトル画像に変換する三スペクトル画像生成パイプラインを提案する。
提案手法は,HSI分類における最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-04-19T18:32:52Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
我々は、FGRR(Fearground-aware Graph-based Reasoning)というドメインDのための新しい汎用フレームワークを提案する。
FGRRはグラフ構造を検出パイプラインに組み込んで、ドメイン内およびドメイン間フォアグラウンドオブジェクト関係を明示的にモデル化する。
実験の結果、提案したFGRRは4つのDomainDベンチマークの最先端よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-06-06T05:12:48Z) - Few Shot Generative Model Adaption via Relaxed Spatial Structural
Alignment [130.84010267004803]
限られたデータでGAN(Generative Adversarial Network)を訓練することは難しい課題である。
実現可能な解決策は、大規模なソースドメインで十分に訓練されたGANから始め、ターゲットドメインにいくつかのサンプルで適応することである。
本研究では,適応時の対象生成モデルのキャリブレーションを行うための緩和された空間構造アライメント手法を提案する。
論文 参考訳(メタデータ) (2022-03-06T14:26:25Z) - TC-Net: Triple Context Network for Automated Stroke Lesion Segmentation [0.5482532589225552]
本稿では,空間的コンテキスト情報を中心として,新たなネットワークである Triple Context Network (TC-Net) を提案する。
我々のネットワークはオープンデータセットATLASで評価され、最高スコアは0.594、ハウスドルフ距離は27.005mm、平均対称性表面距離は7.137mmである。
論文 参考訳(メタデータ) (2022-02-28T11:12:16Z) - Self-semantic contour adaptation for cross modality brain tumor
segmentation [13.260109561599904]
本稿では,前駆的なタスクへの適応を容易にするために,低レベルエッジ情報を活用することを提案する。
正確な輪郭は、意味適応を導くために空間情報を提供する。
われわれはBraTS2018データベース上で脳腫瘍のクロスモーダルセグメンテーションの枠組みについて検討した。
論文 参考訳(メタデータ) (2022-01-13T15:16:55Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
本稿では,WSOLの畳み込み機能に組み込まれた構造情報を完全に活用するための2段階構造保存アクティベーション(SPA)を提案する。
第1段階では、分類ネットワークによって引き起こされる構造ミス問題を軽減するために制限アクティベーションモジュール(ram)が設計されている。
第2段階では, 自己相関マップ生成(SCG)モジュールと呼ばれるプロセス後アプローチを提案し, 構造保存ローカライゼーションマップを得る。
論文 参考訳(メタデータ) (2021-03-08T03:04:14Z) - Bi-Dimensional Feature Alignment for Cross-Domain Object Detection [71.85594342357815]
教師なしクロスドメイン検出モデルを提案する。
ソースドメインのアノテーション付きデータを利用して、異なるターゲットドメインに対してオブジェクト検出器をトレーニングする。
提案モデルでは、オブジェクト検出のためのクロスドメイン表現のばらつきを緩和する。
論文 参考訳(メタデータ) (2020-11-14T03:03:11Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。