論文の概要: Towards Reliable Dermatology Evaluation Benchmarks
- arxiv url: http://arxiv.org/abs/2309.06961v2
- Date: Sat, 16 Dec 2023 06:14:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 20:07:45.606958
- Title: Towards Reliable Dermatology Evaluation Benchmarks
- Title(参考訳): 信頼性のある皮膚科評価ベンチマークに向けて
- Authors: Fabian Gr\"oger, Simone Lionetti, Philippe Gottfrois, Alvaro
Gonzalez-Jimenez, Matthew Groh, Roxana Daneshjou, Labelling Consortium,
Alexander A. Navarini, Marc Pouly
- Abstract要約: デジタル皮膚学のベンチマークデータセットには、モデルパフォーマンス推定の信頼性を低下させる不正確さが無意識に含まれている。
本稿では,前回のキュレーションを回避した問題を特定するために,資源効率の高いデータクリーニングプロトコルを提案する。
- 参考スコア(独自算出の注目度): 37.464923424849964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benchmark datasets for digital dermatology unwittingly contain inaccuracies
that reduce trust in model performance estimates. We propose a
resource-efficient data-cleaning protocol to identify issues that escaped
previous curation. The protocol leverages an existing algorithmic cleaning
strategy and is followed by a confirmation process terminated by an intuitive
stopping criterion. Based on confirmation by multiple dermatologists, we remove
irrelevant samples and near duplicates and estimate the percentage of label
errors in six dermatology image datasets for model evaluation promoted by the
International Skin Imaging Collaboration. Along with this paper, we publish
revised file lists for each dataset which should be used for model evaluation.
Our work paves the way for more trustworthy performance assessment in digital
dermatology.
- Abstract(参考訳): デジタル皮膚学のベンチマークデータセットには、モデルパフォーマンス推定の信頼性を低下させる不正確性が含まれている。
我々は,以前のキュレーションから逃れた問題を特定するために,リソース効率の良いデータクリーニングプロトコルを提案する。
このプロトコルは既存のアルゴリズムクリーニング戦略を利用しており、直感的な停止基準によって終了する確認プロセスが続く。
複数の皮膚科医による確認に基づき,本研究は無関係なサンプルとほぼ重複を除去し,国際皮膚画像コラボレーションによるモデル評価のための6つの皮膚画像データセットにおけるラベル誤差の割合を推定する。
本稿では,モデル評価に使用すべきデータセット毎のファイルリストを改訂して公開する。
我々の研究は、デジタル皮膚科におけるより信頼できるパフォーマンス評価の道を開いた。
関連論文リスト
- LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
我々は、科学的ArXiv論文に基づくスケーラブルな進化型ライブベンチマークであるLiveXivを提案する。
LiveXivは、任意のタイムスタンプでドメイン固有の原稿にアクセスし、視覚的な問合せペアを自動的に生成することを提案する。
ベンチマークの最初のバージョンで、複数のオープンでプロプライエタリなLMM(Large Multi-modal Models)をベンチマークし、その挑戦的な性質を示し、モデルの真の能力を明らかにする。
論文 参考訳(メタデータ) (2024-10-14T17:51:23Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Estimating label quality and errors in semantic segmentation data via
any model [19.84626033109009]
ラベル品質を評価する手法について検討し、最も低いスコアのイメージを正しくラベル付けする可能性が低いことを示す。
これにより、高品質なトレーニング/評価データセットを保証するために、レビューするデータを優先順位付けすることが可能になる。
論文 参考訳(メタデータ) (2023-07-11T07:29:09Z) - Intrinsic Self-Supervision for Data Quality Audits [35.69673085324971]
コンピュータビジョンにおけるベンチマークデータセットは、しばしば、オフトピック画像、ほぼ重複、ラベルエラーを含む。
本稿では,データクリーニングの課題を再考し,ランキング問題やスコアリング問題として定式化する。
文脈認識型自己教師型表現学習と距離に基づく指標の組み合わせは, 適応バイアスのない問題発見に有効であることがわかった。
論文 参考訳(メタデータ) (2023-05-26T15:57:04Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
胸部X線画像のデータセットとバウンディングボックスラベルを用いて,13種類の異常の分類を行った。
ラベル付きデータの平均精度と精度を60%に抑えることで,完全教師付きモデルと同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2022-06-01T09:20:30Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Cancer image classification based on DenseNet model [3.3516258832067067]
DenseNet Blockに基づく新しい転移性癌画像分類モデルを提案する。
PatchCamelyon(PCam)ベンチマークデータセットのわずかに修正されたバージョンに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-11-23T03:05:42Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - An Extensive Study on Cross-Dataset Bias and Evaluation Metrics
Interpretation for Machine Learning applied to Gastrointestinal Tract
Abnormality Classification [2.985964157078619]
GI領域における疾患の自動解析は、コンピュータ科学や医学関連雑誌でホットな話題となっている。
クロスデータセットによる評価指標と機械学習モデルの明確な理解は、この分野の研究を新たな品質レベルに導くために不可欠である。
16種類のGIトラクタ条件を分類できる5つの異なる機械学習モデルの包括的評価を行う。
論文 参考訳(メタデータ) (2020-05-08T08:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。