Real-time quantum dynamics of thermal states with neural thermofields
- URL: http://arxiv.org/abs/2309.07063v2
- Date: Wed, 22 May 2024 08:47:44 GMT
- Title: Real-time quantum dynamics of thermal states with neural thermofields
- Authors: Jannes Nys, Zakari Denis, Giuseppe Carleo,
- Abstract summary: We study the real-time dynamics of thermal states in two dimensions, based on thermofield dynamics, variational Monte Carlo, and neural-network quantum states.
We provide predictions of the real-time dynamics on a 6x6 lattice that lies outside the reach of exact simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving the time-dependent quantum many-body Schr\"odinger equation is a challenging task, especially for states at a finite temperature, where the environment affects the dynamics. Most existing approximating methods are designed to represent static thermal density matrices, 1D systems, and/or zero-temperature states. In this work, we propose a method to study the real-time dynamics of thermal states in two dimensions, based on thermofield dynamics, variational Monte Carlo, and neural-network quantum states. To this aim, we introduce two novel tools: (i) a procedure to accurately simulate the cooling down of arbitrary quantum variational states from infinite temperature, and (ii) a generic thermal (autoregressive) recurrent neural-network (ARNNO) Ansatz that allows for direct sampling from the density matrix using thermofield basis rotations. We apply our technique to the transverse-field Ising model subject to an additional longitudinal field and demonstrate that the time-dependent observables, including correlation operators, can be accurately reproduced for a 4x4 spin lattice. We provide predictions of the real-time dynamics on a 6x6 lattice that lies outside the reach of exact simulations.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer [0.20971479389679332]
We study the relaxation dynamics of initially prepared product states under periodic driving in a kicked Ising model.
We identify the presence of a prethermal regime characterised by magnetisation measurements at twice the period of the Floquet cycle.
Our results provide evidence supporting the realisation of a period-doubling DTC in a two-dimensional system.
arXiv Detail & Related papers (2024-03-25T12:56:13Z) - Quantum Ising model on two dimensional anti-de Sitter space [1.0377683220196874]
This paper investigates the transverse Ising model on a discretization of two-dimensional anti-de Sitter space.
We use classical and quantum algorithms to simulate real-time evolution and measure out-of-time-ordered correlators.
arXiv Detail & Related papers (2023-09-08T15:25:50Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Isometric tensor network representations of two-dimensional thermal
states [0.0]
We use the class of recently introduced tensor network states to represent thermal states of the transverse field Ising model.
We find that this approach offers a different way with low computational complexity to represent states at finite temperatures.
arXiv Detail & Related papers (2023-02-15T19:00:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Tensor-network approach to thermalization in open quantum many-body
systems [0.0]
We investigate the relaxation dynamics of open non-integrable quantum many-body systems in the thermodynamic limit.
We numerically show that when an initial state of the LQME is a thermal Gibbs state, a time evolved state is always indistinguishable from a Gibbs state with a time-dependent effective temperature.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.