A Comprehensive Analysis of the Role of Artificial Intelligence and
Machine Learning in Modern Digital Forensics and Incident Response
- URL: http://arxiv.org/abs/2309.07064v2
- Date: Sun, 3 Dec 2023 09:02:30 GMT
- Title: A Comprehensive Analysis of the Role of Artificial Intelligence and
Machine Learning in Modern Digital Forensics and Incident Response
- Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane, Vassil Vassilev
- Abstract summary: The goal is to look closely at how AI and ML techniques are used in digital forensics and incident response.
This endeavour digs far beneath the surface to unearth the intricate ways AI-driven methodologies are shaping these crucial facets of digital forensics practice.
Ultimately, this paper underscores the significance of AI and ML integration in digital forensics, offering insights into their benefits, drawbacks, and broader implications for tackling modern cyber threats.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the dynamic landscape of digital forensics, the integration of Artificial
Intelligence (AI) and Machine Learning (ML) stands as a transformative
technology, poised to amplify the efficiency and precision of digital forensics
investigations. However, the use of ML and AI in digital forensics is still in
its nascent stages. As a result, this paper gives a thorough and in-depth
analysis that goes beyond a simple survey and review. The goal is to look
closely at how AI and ML techniques are used in digital forensics and incident
response. This research explores cutting-edge research initiatives that cross
domains such as data collection and recovery, the intricate reconstruction of
cybercrime timelines, robust big data analysis, pattern recognition,
safeguarding the chain of custody, and orchestrating responsive strategies to
hacking incidents. This endeavour digs far beneath the surface to unearth the
intricate ways AI-driven methodologies are shaping these crucial facets of
digital forensics practice. While the promise of AI in digital forensics is
evident, the challenges arising from increasing database sizes and evolving
criminal tactics necessitate ongoing collaborative research and refinement
within the digital forensics profession. This study examines the contributions,
limitations, and gaps in the existing research, shedding light on the potential
and limitations of AI and ML techniques. By exploring these different research
areas, we highlight the critical need for strategic planning, continual
research, and development to unlock AI's full potential in digital forensics
and incident response. Ultimately, this paper underscores the significance of
AI and ML integration in digital forensics, offering insights into their
benefits, drawbacks, and broader implications for tackling modern cyber
threats.
Related papers
- Advancing Crime Linkage Analysis with Machine Learning: A Comprehensive Review and Framework for Data-Driven Approaches [0.0]
Crime linkage is the process of analyzing criminal behavior data to determine whether a pair or group of crime cases are connected or belong to a series of offenses.
This study aims to understand the challenges faced by machine learning approaches in crime linkage and to support foundational knowledge for future data-driven methods.
arXiv Detail & Related papers (2024-10-30T18:22:45Z) - Blockchain Based Information Security and Privacy Protection: Challenges and Future Directions using Computational Literature Review [1.3864583085700581]
blockchain technology has gained immense popularity in enhancing individual security and privacy.
Rapid proliferation of published research articles presents challenges for manual analysis and synthesis.
We identify 10 topics related to security and privacy and provide a detailed description of each topic.
arXiv Detail & Related papers (2024-09-22T14:41:43Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Stepping out of Flatland: Discovering Behavior Patterns as Topological Structures in Cyber Hypergraphs [0.7835894511242797]
We present a novel framework based in the theory of hypergraphs and topology to understand data from cyber networks.
We will demonstrate concrete examples in a large-scale cyber network dataset.
arXiv Detail & Related papers (2023-11-08T00:00:33Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
We highlight the crucial need for the development of forensic techniques capable of identifying harmful synthetic creations and distinguishing them from reality.
Our focus extends to various forms of media, such as images, videos, audio, and text, as we examine how synthetic realities are crafted and explore approaches to detecting these malicious creations.
This study is of paramount importance due to the rapid progress of AI generative techniques and their impact on the fundamental principles of Forensic Science.
arXiv Detail & Related papers (2023-06-09T15:55:10Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - SoK: Exploring the State of the Art and the Future Potential of
Artificial Intelligence in Digital Forensic Investigation [6.172776277589064]
This paper summarises existing artificial intelligence based tools and approaches in digital forensics.
For each application of artificial intelligence highlighted, a number of current challenges and future potential impact is discussed.
arXiv Detail & Related papers (2020-12-02T12:07:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.