論文の概要: Assessing cognitive function among older adults using machine learning and wearable device data: a feasibility study
- arxiv url: http://arxiv.org/abs/2309.07133v2
- Date: Sun, 24 Mar 2024 23:12:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 03:17:47.871437
- Title: Assessing cognitive function among older adults using machine learning and wearable device data: a feasibility study
- Title(参考訳): 機械学習とウェアラブルデバイスデータを用いた高齢者の認知機能評価 : 実現可能性調査
- Authors: Collin Sakal, Tingyou Li, Juan Li, Xinyue Li,
- Abstract要約: 健常成人と認知不良高齢者を区別する予測モデルを開発した。
活動と睡眠パラメータは、他の認知流速と比較して、処理速度、作業記憶、注意に強く関連していた。
- 参考スコア(独自算出の注目度): 3.0872517448897465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Timely implementation of interventions to slow cognitive decline among older adults requires accurate monitoring to detect changes in cognitive function. Data gathered using wearable devices that can continuously monitor factors known to be associated with cognition could be used to train machine learning models and develop wearable-based cognitive monitoring systems. Using data from over 2,400 older adults in the National Health and Nutrition Examination Survey (NHANES) we developed prediction models to differentiate older adults with normal cognition from those with poor cognition based on outcomes from three cognitive tests measuring different domains of cognitive function. During repeated cross-validation, CatBoost, XGBoost, and Random Forest models performed best when predicting cognition based on processing speed, working memory, and attention (median AUCs >0.82) compared to immediate and delayed recall (median AUCs >0.72) and categorical verbal fluency (median AUC >0.68). Activity and sleep parameters were also more strongly associated with processing speed, working memory, and attention compared to other cognitive subdomains. Our work provides proof of concept that wearable-based cognitive monitoring systems may be a viable alternative to traditional methods for monitoring processing speeds, working memory, and attention. We further identified novel metrics that could be targets in future causal studies seeking to better understand how sleep and activity parameters influence cognitive function among older adults.
- Abstract(参考訳): 高齢者の認知機能低下を遅らせるための介入のタイムリーな実施には、認知機能の変化を検出するための正確なモニタリングが必要である。
認知に関連する要因を継続的に監視できるウェアラブルデバイスを使用して収集されたデータは、機械学習モデルをトレーニングし、ウェアラブルベースの認知監視システムを開発するために使用できる。
NHANES(National Health and Nutrition Examination Survey)の2400人以上の高齢者のデータを用いて、認知機能の異なる領域を測定する3つの認知テストの結果に基づいて、正常な認知力を持つ高齢者と認知力の低い高齢者を区別する予測モデルを開発した。
CatBoost, XGBoost, Random Forest モデルでは, 処理速度, 作業記憶, 注意に基づく認知の予測において, 即時的, 遅延的リコール (中間的 AUCs >0.72) およびカテゴリー的言語流速 (中間的 AUCs >0.68) と比較して, 最適に動作した。
活動と睡眠パラメータは、他の認知サブドメインと比較して、処理速度、作業記憶、注意に強く関連していた。
我々の研究は、ウェアラブルベースの認知モニタリングシステムが、処理速度、作業記憶、注意力を監視する従来の方法の代替となるかもしれないという概念実証を提供する。
さらに、睡眠と活動パラメータが高齢者の認知機能にどのように影響するかをよりよく理解するために、将来の因果研究の標的となる可能性のある新しい指標を特定した。
関連論文リスト
- Auto Detecting Cognitive Events Using Machine Learning on Pupillary Data [0.0]
瞳孔の大きさは認知作業負荷の貴重な指標であり、自律神経系によって支配される注意の変化と覚醒を反映している。
本研究では、機械学習を用いて個人が経験した認知イベントを自動的に検出する可能性について検討する。
論文 参考訳(メタデータ) (2024-10-18T04:54:46Z) - Automatic detection of cognitive impairment in elderly people using an entertainment chatbot with Natural Language Processing capabilities [8.032202552952299]
本稿では,高齢者の認知障害を透過的にモニタリングする知的会話システムについて紹介する。
自然言語生成技術を用いて,更新されたニュース項目から対話フローを自動生成する。
このシステムは、質問に対する回答のゴールドスタンダードを推論し、認知能力を自動的に評価する。
論文 参考訳(メタデータ) (2024-05-28T19:17:48Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
我々はBrain-Computer Interface技術を用いてユーザの好みを推測し、その注意力は視覚的コンテンツと感情的体験との関連性に相関する。
我々はこれらを,情報検索,生成モデルのパーソナライズされたステアリング,感情経験のクラウドソーシング人口推定など,関連するアプリケーションにリンクする。
論文 参考訳(メタデータ) (2024-05-15T20:41:46Z) - In-vehicle Sensing and Data Analysis for Older Drivers with Mild
Cognitive Impairment [0.8426358786287627]
本研究の目的は、高精度の位置決めとテレマティクスデータを得ることができる低コストの車内センシングハードウェアを設計することである。
軽度認知障害(MCI)と軽度認知障害(MCI)を比較した統計的分析の結果,MCIはよりスムーズで安全な運転パターンを示すことが明らかとなった。
我々のランダムフォレストモデルでは、夜間旅行の数、旅行数、教育がデータ評価に最も影響を及ぼす要因として特定されました。
論文 参考訳(メタデータ) (2023-11-15T15:47:24Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
精神科患者の受動的活動監視は、リアルタイムでの行動変化を検出するために不可欠である。
睡眠行動認識は、患者の活動サイクルを表現する行動マーカーである。
スマートフォンから受動的に検出されたデータは、患者の生体リズムに優れた代替手段である。
論文 参考訳(メタデータ) (2022-11-08T17:29:40Z) - Modeling cognitive load as a self-supervised brain rate with
electroencephalography and deep learning [2.741266294612776]
本研究では,脳波データからメンタルワークロードをモデリングするための,新たな自己教師型手法を提案する。
脳波データからスペクトル地形図を空間的に保存して脳速度変数に適合させることができる畳み込みリカレントニューラルネットワークである。
学習した認知活性化の準安定なブロックの存在は、それらは畳み込みによって誘導され、時間とともに互いに依存していないように見えるため、脳反応の非定常的性質と直感的に一致している。
論文 参考訳(メタデータ) (2022-09-21T07:44:21Z) - Learning Human Cognitive Appraisal Through Reinforcement Memory Unit [63.83306892013521]
逐次評価タスクにおける人間の認知評価の効果を生かしたリカレントニューラルネットワークのためのメモリ強調機構を提案する。
記憶増強機構を2つの正および負の強化記憶とともに評価状態を含む強化記憶ユニット(RMU)として概念化する。
論文 参考訳(メタデータ) (2022-08-06T08:56:55Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
鎮静は認知症において高い有病率を有する神経精神医学症状の1つである。
扇動エピソードの検出は、認知症に生きる人々(PLWD)に早期かつタイムリーな介入を提供するのに役立つ。
本研究は,家庭内モニタリングデータを用いてPLWDの動揺リスクを分析するための教師付き学習モデルを提案する。
論文 参考訳(メタデータ) (2021-10-19T11:45:01Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
磁気共鳴画像(MRI)による脳年齢推定は、被験者の生物学的脳年齢と時系列年齢の違いを導出する。
より高年齢の神経変性を早期に検出することは、より良い医療と患者の計画を促進する可能性がある。
我々は、脳の3Dパッチと畳み込みニューラルネットワーク(CNN)を用いて、局所的な脳年齢推定器を開発する新しいディープラーニングアプローチを開発した。
論文 参考訳(メタデータ) (2020-08-29T11:50:37Z) - AutoCogniSys: IoT Assisted Context-Aware Automatic Cognitive Health
Assessment [2.7998963147546148]
AutoCogniSysは、コンテキスト対応の自動認知ヘルスアセスメントシステムである。
我々は,高齢者の生活環境における認知的健康度自動評価システムを開発した。
AutoCogniSysのパフォーマンスは、高齢者の認知健康度を評価する際の精度の最大93%を証明している。
論文 参考訳(メタデータ) (2020-03-17T01:44:59Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。