論文の概要: Auto Detecting Cognitive Events Using Machine Learning on Pupillary Data
- arxiv url: http://arxiv.org/abs/2410.14174v1
- Date: Fri, 18 Oct 2024 04:54:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:55.718348
- Title: Auto Detecting Cognitive Events Using Machine Learning on Pupillary Data
- Title(参考訳): 瞳孔データを用いた機械学習による認知事象の自動検出
- Authors: Quang Dang, Murat Kucukosmanoglu, Michael Anoruo, Golshan Kargosha, Sarah Conklin, Justin Brooks,
- Abstract要約: 瞳孔の大きさは認知作業負荷の貴重な指標であり、自律神経系によって支配される注意の変化と覚醒を反映している。
本研究では、機械学習を用いて個人が経験した認知イベントを自動的に検出する可能性について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Assessing cognitive workload is crucial for human performance as it affects information processing, decision making, and task execution. Pupil size is a valuable indicator of cognitive workload, reflecting changes in attention and arousal governed by the autonomic nervous system. Cognitive events are closely linked to cognitive workload as they activate mental processes and trigger cognitive responses. This study explores the potential of using machine learning to automatically detect cognitive events experienced using individuals. We framed the problem as a binary classification task, focusing on detecting stimulus onset across four cognitive tasks using CNN models and 1-second pupillary data. The results, measured by Matthew's correlation coefficient, ranged from 0.47 to 0.80, depending on the cognitive task. This paper discusses the trade-offs between generalization and specialization, model behavior when encountering unseen stimulus onset times, structural variances among cognitive tasks, factors influencing model predictions, and real-time simulation. These findings highlight the potential of machine learning techniques in detecting cognitive events based on pupil and eye movement responses, contributing to advancements in personalized learning and optimizing neurocognitive workload management.
- Abstract(参考訳): 認知的ワークロードを評価することは、情報処理、意思決定、タスク実行に影響を与えるため、人間のパフォーマンスにとって不可欠である。
瞳孔の大きさは認知作業負荷の貴重な指標であり、自律神経系によって支配される注意の変化と覚醒を反映している。
認知的事象は、精神過程を活性化し、認知反応を誘発する認知的作業負荷と密接に関連している。
本研究では、機械学習を用いて個人が経験した認知イベントを自動的に検出する可能性について検討する。
我々は,CNNモデルと1秒の瞳孔データを用いて,4つの認知タスクにまたがる刺激の発症を検出することに焦点を当て,二分分類タスクとしてこの問題を定式化した。
マシューの相関係数によって測定された結果は、認知タスクによって0.47から0.80まで変化した。
本稿では,一般化と特殊化のトレードオフ,未確認刺激発生時のモデル行動,認知タスク間の構造的差異,モデル予測に影響を与える要因,リアルタイムシミュレーションについて論じる。
これらの知見は、瞳および眼球運動反応に基づく認知事象の検出における機械学習技術の可能性を強調し、パーソナライズされた学習の進歩と、認知的ワークロード管理の最適化に寄与する。
関連論文リスト
- Cross-subject Brain Functional Connectivity Analysis for Multi-task Cognitive State Evaluation [16.198003101055264]
本研究は脳機能と脳波信号とを併用し,複数の被験者の脳領域の関連性を把握し,リアルタイム認知状態を評価する。
分析と評価のために30件の被験者が取得され, 内的対象, 対人的対象, ジェンダー的基盤となる脳機能接続など, さまざまな視点で解釈される。
論文 参考訳(メタデータ) (2024-08-27T12:51:59Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
我々はBrain-Computer Interface技術を用いてユーザの好みを推測し、その注意力は視覚的コンテンツと感情的体験との関連性に相関する。
我々はこれらを,情報検索,生成モデルのパーソナライズされたステアリング,感情経験のクラウドソーシング人口推定など,関連するアプリケーションにリンクする。
論文 参考訳(メタデータ) (2024-05-15T20:41:46Z) - Exploring a Cognitive Architecture for Learning Arithmetic Equations [0.0]
本稿では,算術学習を支える認知メカニズムについて考察する。
本稿では,数ベクトル化埋め込みネットワークと連想メモリモデルを実装し,知能システムによる算術方程式の学習とリコールについて検討する。
知的システムにおける数学的認知の神経的相関に関する継続的な研究に貢献することを目的としている。
論文 参考訳(メタデータ) (2024-05-05T18:42:00Z) - Assessing cognitive function among older adults using machine learning and wearable device data: a feasibility study [3.0872517448897465]
健常成人と認知不良高齢者を区別する予測モデルを開発した。
活動と睡眠パラメータは、他の認知流速と比較して、処理速度、作業記憶、注意に強く関連していた。
論文 参考訳(メタデータ) (2023-08-28T00:07:55Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - The Effect of Information Type on Human Cognitive Augmentation [0.0]
本稿では,コグがアンサンブルに寄与する情報の性質に依存し,認知能力の向上の度合いを示す。
実験の結果、概念情報は認知精度、認知精度、認知力の増大をもたらす最も効果的な種類の情報であることが示された。
論文 参考訳(メタデータ) (2023-02-15T20:38:47Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
自然言語処理モデルに認知言語処理信号を統合するためのCogAlignアプローチを提案する。
我々は、CogAlignが、パブリックデータセット上の最先端モデルよりも、複数の認知機能で大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2021-06-10T07:10:25Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - SensAI+Expanse Emotional Valence Prediction Studies with Cognition and
Memory Integration [0.0]
この研究は、認知科学研究を支援することができる人工知能エージェントに貢献する。
開発された人工知能システム(SensAI+Expanse)には、機械学習アルゴリズム、共感アルゴリズム、メモリが含まれる。
本研究は, 年齢と性別の相違が有意であることを示すものである。
論文 参考訳(メタデータ) (2020-01-03T18:17:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。