論文の概要: User Training with Error Augmentation for Electromyogram-based Gesture
Classification
- arxiv url: http://arxiv.org/abs/2309.07289v2
- Date: Mon, 6 Nov 2023 21:11:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 22:04:58.684500
- Title: User Training with Error Augmentation for Electromyogram-based Gesture
Classification
- Title(参考訳): 筋電図に基づくジェスチャ分類のための誤差強調によるユーザトレーニング
- Authors: Yunus Bicer, Niklas Smedemark-Margulies, Basak Celik, Elifnur Sunger,
Ryan Orendorff, Stephanie Naufel, Tales Imbiriba, Deniz Erdo\u{g}mu\c{s},
Eugene Tunik, Mathew Yarossi
- Abstract要約: 手首バンド構成の8電極から表面筋電図(sEMG)活性を抽出し,ユーザインタフェースをリアルタイムに制御するシステムの設計と試験を行った。
sEMGデータは、リアルタイムで手の動きを分類する機械学習アルゴリズムにストリームされた。
- 参考スコア(独自算出の注目度): 4.343691138091818
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We designed and tested a system for real-time control of a user interface by
extracting surface electromyographic (sEMG) activity from eight electrodes in a
wrist-band configuration. sEMG data were streamed into a machine-learning
algorithm that classified hand gestures in real-time. After an initial model
calibration, participants were presented with one of three types of feedback
during a human-learning stage: veridical feedback, in which predicted
probabilities from the gesture classification algorithm were displayed without
alteration, modified feedback, in which we applied a hidden augmentation of
error to these probabilities, and no feedback. User performance was then
evaluated in a series of minigames, in which subjects were required to use
eight gestures to manipulate their game avatar to complete a task. Experimental
results indicated that, relative to baseline, the modified feedback condition
led to significantly improved accuracy and improved gesture class separation.
These findings suggest that real-time feedback in a gamified user interface
with manipulation of feedback may enable intuitive, rapid, and accurate task
acquisition for sEMG-based gesture recognition applications.
- Abstract(参考訳): 手首バンド構成の8電極から表面筋電図(sEMG)活性を抽出し,ユーザインタフェースをリアルタイムに制御するシステムの設計と試験を行った。
sEMGデータは、リアルタイムで手の動きを分類する機械学習アルゴリズムにストリームされた。
最初のモデルキャリブレーションを行った後、被験者は、人間の学習段階における3種類のフィードバックのうちの1つとして、ジェスチャ分類アルゴリズムからの予測確率を変更せずに表示し、これらの確率に誤差の隠れた増減を適用し、フィードバックなしの検証フィードバックを提示した。
ユーザのパフォーマンスは一連のミニゲームで評価され、被験者は8つのジェスチャーでゲームアバターを操作し、タスクを完了させる必要があった。
実験の結果,ベースラインと比較して,フィードバック条件の修正により精度が著しく向上し,ジェスチャクラス分離が向上した。
これらの結果から,フィードバック操作によるゲーミフィケーションユーザインタフェースにおけるリアルタイムフィードバックは,sEMGに基づくジェスチャー認識アプリケーションにおいて,直感的かつ迅速かつ正確なタスク獲得を可能にする可能性が示唆された。
関連論文リスト
- Multi-Modal Self-Supervised Learning for Surgical Feedback Effectiveness Assessment [66.6041949490137]
そこで本研究では,音声による音声入力とそれに対応する手術映像からの情報を統合して,フィードバックの有効性を予測する手法を提案する。
以上の結果から,手書きフィードバックと手術映像の両方が,訓練者の行動変化を個別に予測できることがわかった。
本研究は,手術フィードバックの自動評価を推進するためのマルチモーダル学習の可能性を示すものである。
論文 参考訳(メタデータ) (2024-11-17T00:13:00Z) - Wearable Sensor-Based Few-Shot Continual Learning on Hand Gestures for Motor-Impaired Individuals via Latent Embedding Exploitation [6.782362178252351]
本稿では,リプレイベースのFew-Shot連続学習フレームワークにおいて,Latent Embedding Exploitation (LEE) 機構を導入する。
本手法は,ジェスチャー先行知識として知られる保存された潜伏埋め込みを利用して,多様な潜伏特徴空間を生成する。
本手法は、運動障害者がウェアラブルデバイスを活用するのに役立ち、そのユニークな動作スタイルを学習し応用することができる。
論文 参考訳(メタデータ) (2024-05-14T21:20:27Z) - A Deep Learning Sequential Decoder for Transient High-Density
Electromyography in Hand Gesture Recognition Using Subject-Embedded Transfer
Learning [11.170031300110315]
ハンドジェスチャ認識(HGR)は、AIによる人間コンピュータの利用の増加により注目されている。
これらのインターフェースには、拡張現実の制御、アジャイルの義肢、外骨格など、さまざまなアプリケーションがある。
これらのインターフェースには、拡張現実の制御、アジャイルの義肢、外骨格など、さまざまなアプリケーションがある。
論文 参考訳(メタデータ) (2023-09-23T05:32:33Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
本システムでは, コンデンサセンサからの信号を手の動き認識器に組み込んだ手動作認識システムを提案する。
コントローラは、着用者5本の指それぞれからリアルタイム信号を生成する。
機械学習技術を用いて時系列信号を解析し,500ms以内で5本の指を表現できる3つの特徴を同定する。
論文 参考訳(メタデータ) (2023-05-12T17:24:02Z) - Reconfigurable Data Glove for Reconstructing Physical and Virtual Grasps [100.72245315180433]
本研究では,人間の手-物体相互作用の異なるモードを捉えるために,再構成可能なデータグローブの設計を提案する。
グローブは3つのモードで動作し、異なる特徴を持つ様々な下流タスクを実行する。
i)手の動きと関連力を記録し,(ii)VRの操作流速を改善するとともに,(iii)様々なツールの現実的なシミュレーション効果を生み出すことにより,システムの3つのモードを評価する。
論文 参考訳(メタデータ) (2023-01-14T05:35:50Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - Action-Specific Perception & Performance on a Fitts's Law Task in
Virtual Reality: The Role of Haptic Feedback [8.993666948179644]
Action-Specific Perception (ASP) 理論は、タスク上の個人のパフォーマンスが、タスクのコンポーネントとプロシージャに関連する個人の空間的および時間的知覚を調節する、と仮定している。
本稿では,触覚フィードバックのモダリティが生み出す性能と知覚の関係について検討する。
論文 参考訳(メタデータ) (2022-07-15T11:07:15Z) - Teaching Robots to Grasp Like Humans: An Interactive Approach [3.3836709236378746]
本研究は,実証と修正に基づいて,人間から把握する複雑な作業がどのように学習されるかを検討する。
より良いデモを提供するように訓練する代わりに、専門家でないユーザには、最初のデモのダイナミクスをインタラクティブに修正する能力が提供される。
論文 参考訳(メタデータ) (2021-10-09T10:27:50Z) - Assisted Perception: Optimizing Observations to Communicate State [112.40598205054994]
我々は、ロボット遠隔操作や視覚障害のあるナビゲーションといったタスクにおいて、ユーザが世界の状態を見積もるのを支援することを目的としている。
ユーザによって処理された場合、より正確な内部状態推定につながる新しい観測結果を合成する。
論文 参考訳(メタデータ) (2020-08-06T19:08:05Z) - Effect of Analysis Window and Feature Selection on Classification of
Hand Movements Using EMG Signal [0.20999222360659603]
近年,パターン認識(PR)に基づく筋電制御の研究は,機械学習分類器の助けを借りて有望な結果を示した。
複数のクラスの動きと直感的な制御を提供することで、日常的な生活運動を行うために切断対象に電力を供給することができる。
我々は,手の動きの分類精度を向上させるために,効率的なデータ前処理と最適な特徴選択が有効であることを示す。
論文 参考訳(メタデータ) (2020-02-02T19:03:23Z) - Facial Feedback for Reinforcement Learning: A Case Study and Offline
Analysis Using the TAMER Framework [51.237191651923666]
訓練者の表情からエージェント学習の可能性について,評価フィードバックとして解釈することで検討した。
設計したCNN-RNNモデルを用いて,学習者に対して表情とコンペティションの使用を指示することで,肯定的および否定的なフィードバックを推定する精度を向上させることができることを示す。
シミュレーション実験の結果,表情に基づく予測フィードバックのみから学習できることが示唆された。
論文 参考訳(メタデータ) (2020-01-23T17:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。