論文の概要: $\texttt{NePhi}$: Neural Deformation Fields for Approximately
Diffeomorphic Medical Image Registration
- arxiv url: http://arxiv.org/abs/2309.07322v1
- Date: Wed, 13 Sep 2023 21:21:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 16:48:12.147452
- Title: $\texttt{NePhi}$: Neural Deformation Fields for Approximately
Diffeomorphic Medical Image Registration
- Title(参考訳): $\texttt{NePhi}$: およそ拡散型医用画像登録のためのニューラル変形場
- Authors: Lin Tian, Soumyadip Sengupta, Hastings Greer, Ra\'ul San Jos\'e
Est\'epar, Marc Niethammer
- Abstract要約: $textttNePhi$は、およそ微分同相変換をもたらす神経変形モデルである。
以上の結果から, $textttNePhi$ は単一解像度の登録設定で voxel ベースの表現と同様の精度を達成できることがわかった。
- 参考スコア(独自算出の注目度): 22.10388383399148
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work proposes $\texttt{NePhi}$, a neural deformation model which results
in approximately diffeomorphic transformations. In contrast to the predominant
voxel-based approaches, $\texttt{NePhi}$ represents deformations functionally
which allows for memory-efficient training and inference. This is of particular
importance for large volumetric registrations. Further, while medical image
registration approaches representing transformation maps via multi-layer
perceptrons have been proposed, $\texttt{NePhi}$ facilitates both pairwise
optimization-based registration $\textit{as well as}$ learning-based
registration via predicted or optimized global and local latent codes. Lastly,
as deformation regularity is a highly desirable property for most medical image
registration tasks, $\texttt{NePhi}$ makes use of gradient inverse consistency
regularization which empirically results in approximately diffeomorphic
transformations. We show the performance of $\texttt{NePhi}$ on two 2D
synthetic datasets as well as on real 3D lung registration. Our results show
that $\texttt{NePhi}$ can achieve similar accuracies as voxel-based
representations in a single-resolution registration setting while using less
memory and allowing for faster instance-optimization.
- Abstract(参考訳): この研究は、およそ微分同相変換をもたらす神経変形モデルである$\texttt{NePhi}$を提案する。
主なvoxelベースのアプローチとは対照的に、$\texttt{nephi}$は機能的に変形を表し、メモリ効率の良いトレーニングと推論を可能にする。
これは大量登録において特に重要である。
さらに、マルチ層パーセプトロンによる変換マップを表す医用画像登録手法が提案されている一方で、$\texttt{NePhi}$は、ペアワイズ最適化ベースの登録と、予測または最適化されたグローバルおよびローカル潜在コードによる学習ベースの登録の両方を促進する。
最後に、変形正規性がほとんどの医用画像登録タスクにとって非常に望ましい性質であるため、$\texttt{nephi}$ は勾配逆整合性正規化を利用し、経験的におよそ二相変換をもたらす。
2つの2d合成データセットと実際の3d肺登録で$\texttt{nephi}$のパフォーマンスを示す。
以上の結果から,より少ないメモリと高速なインスタンス最適化を実現しつつ,単一解像度の登録設定において,voxelベースの表現と同様の精度を達成できることが示唆された。
関連論文リスト
- GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration [62.41725951450803]
学習に基づく変形可能な登録は、フィールドの登録精度と滑らかさをトレードオフする重み付けされた目的関数に依存する。
我々は,GSMorphと呼ばれる勾配手術機構に基づく登録モデルを構築し,複数の損失に対してパラメータフリーな高バランスを実現する。
提案手法はモデルに依存しないため,パラメータの追加や推論の遅延を伴わずに,任意のディープ登録ネットワークにマージすることができる。
論文 参考訳(メタデータ) (2023-06-26T13:32:09Z) - Neural Priming for Sample-Efficient Adaptation [92.14357804106787]
ニューラルプライミング(Neural Priming)は、大規模な事前学習されたモデルを分散シフトや下流タスクに適応させる手法である。
ニューラルプライミングは、LAION-2Bほどの大きさの事前訓練であっても、テスト時に行うことができる。
論文 参考訳(メタデータ) (2023-06-16T21:53:16Z) - General Neural Gauge Fields [100.35916421218101]
我々はゲージ変換とニューラルネットワークを協調的に最適化する学習フレームワークを開発した。
我々は、シーン情報を本質的に保存し、優れた性能を得ることができる情報不変ゲージ変換を導出する。
論文 参考訳(メタデータ) (2023-05-05T12:08:57Z) - Anatomy-aware and acquisition-agnostic joint registration with SynthMorph [6.017634371712142]
アフィン画像登録は、医用画像解析の基盤となっている。
ディープラーニング(DL)メソッドは、画像対を出力変換にマッピングする関数を学ぶ。
ほとんどのアフィン法は、ユーザが調整したい解剖学に依存しない。つまり、アルゴリズムが画像のすべての構造を考慮すれば、登録は不正確なものになる。
われわれはこれらの欠点をSynthMorphで解決する。これは高速で対称で、微分型で使い易いDLツールで、任意の脳画像の関節アフィン変形性登録を行う。
論文 参考訳(メタデータ) (2023-01-26T18:59:33Z) - Fast-SNARF: A Fast Deformer for Articulated Neural Fields [92.68788512596254]
本稿では,標準空間とポーズ空間の正確な対応性を求める,ニューラルフィールドのための新しい調音モジュールFast-SNARFを提案する。
Fast-SNARFはこれまでの研究であるSNARFの代替であり、計算効率は大幅に向上した。
変形マップの学習は多くの3次元人間のアバター法において重要な要素であるため、この研究は3次元仮想人間の実現に向けた重要なステップであると考えている。
論文 参考訳(メタデータ) (2022-11-28T17:55:34Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
ディープニューラルネットワークは一般的に、ラベル付きトレーニングデータが多く必要であり、トレーニングデータとテストデータの間のドメインシフトに弱い。
本稿では,ラベル付きソースからラベル付きターゲットドメインへのモデルの適用により,画像登録のための幾何学的領域適応手法を提案する。
本手法は,ベースラインモデルの精度を目標データに適合させながら,ベースラインモデルの50%/47%を継続的に改善する。
論文 参考訳(メタデータ) (2022-07-01T12:16:42Z) - Medical Image Registration via Neural Fields [35.80302878742334]
NIR(Neural Image Registration)と呼ばれる新しいニューラルネットベースの画像登録フレームワークを提案する。
2つの3D MR脳スキャンデータセットの実験により、NIRは登録精度と正規性の両方の観点から最先端のパフォーマンスを得る一方で、従来の最適化ベースの手法よりもはるかに高速に動作していることが示された。
論文 参考訳(メタデータ) (2022-06-07T08:43:31Z) - Affine Medical Image Registration with Coarse-to-Fine Vision Transformer [11.4219428942199]
本稿では,3次元医用画像登録のための学習ベースアルゴリズムであるCoarse-to-Fine Vision Transformer (C2FViT)を提案する。
本手法は, 登録精度, 堅牢性, 一般化性の観点から, 既存のCNNベースのアフィン登録法よりも優れている。
論文 参考訳(メタデータ) (2022-03-29T03:18:43Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
ニューラル常微分方程式(NODE)を利用した汎用的で高速かつ高精度な微分型画像登録フレームワークを提案する。
従来の最適化手法と比較して、我々のフレームワークは実行時間を数十分から数十秒に短縮する。
実験の結果, 提案手法の登録結果は, 各種測定値において, 最先端技術よりも優れていた。
論文 参考訳(メタデータ) (2021-08-07T12:54:17Z) - Deep Learning for Regularization Prediction in Diffeomorphic Image
Registration [8.781861951759948]
微分同相変換の滑らかさを制御するパラメータを自動的に決定する新しいフレームワークを導入する。
画像登録の正規化パラメータとペア画像間のマッピングを学習する深層畳み込みニューラルネットワーク(CNN)に基づく予測モデルを開発した。
実験結果から,本モデルは画像登録のための適切な正規化パラメータを予測できるだけでなく,時間とメモリ効率の面でネットワークトレーニングを改善することが示唆された。
論文 参考訳(メタデータ) (2020-11-28T22:56:44Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
ポイントクラウドの登録は、3Dコンピュータビジョン、グラフィックス、ロボット工学の基本的な問題である。
本稿では,最初の学習ベース登録法であるDeep Gaussian Mixture Registration(DeepGMR)を紹介する。
提案手法は,最先端の幾何学的および学習的登録手法と比較して,良好な性能を示す。
論文 参考訳(メタデータ) (2020-08-20T17:25:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。