Keep your Identity Small: Privacy-preserving Client-side Fingerprinting
- URL: http://arxiv.org/abs/2309.07563v2
- Date: Fri, 15 Sep 2023 16:32:12 GMT
- Title: Keep your Identity Small: Privacy-preserving Client-side Fingerprinting
- Authors: Alberto Fernandez-de-Retana, Igor Santos-Grueiro,
- Abstract summary: Device fingerprinting is a widely used technique that allows a third party to identify a particular device.
One of its most widespread uses is to identify users visiting different websites and thus build their browsing history.
This constitutes a specific type of web tracking that poses a threat to users' privacy.
We propose Privacy-preserving Client-side Fingerprinting (PCF), a new method that allows device fingerprinting on the web, while blocks the possibility of performing web tracking.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Device fingerprinting is a widely used technique that allows a third party to identify a particular device. Applications of device fingerprinting include authentication, attacker identification, or software license binding. Device fingerprinting is also used on the web as a method for identifying users. Unfortunately, one of its most widespread uses is to identify users visiting different websites and thus build their browsing history. This constitutes a specific type of web tracking that poses a threat to users' privacy. While many anti-tracking solutions have been proposed, all of them block or tamper with device fingerprinting techniques rather than just blocking their web tracking application. Therefore, users may be limited in their experience while using a website. In this paper, we propose Privacy-preserving Client-side Fingerprinting (PCF), a new method that allows device fingerprinting on the web, while blocks the possibility of performing web tracking. To this end, PCF is built upon fingerprinting transparency: any website ought to declare its fingerprinting scripts while users will compute them in a privacy-preserving manner, limiting the resultant fingerprints for each different domain and, therefore, making web tracking not feasible.
Related papers
- Beyond the Crawl: Unmasking Browser Fingerprinting in Real User Interactions [9.495142718502072]
Browser fingerprinting is a pervasive online tracking technique used increasingly often for profiling and targeted advertising.
Prior research heavily relied on automated web crawls, which inherently struggle to replicate the nuances of human-computer interactions.
This paper presents a user study involving 30 participants over 10 weeks, capturing telemetry data from real browsing sessions across 3,000 top-ranked websites.
arXiv Detail & Related papers (2025-02-03T18:43:34Z) - Personalized Language Model Learning on Text Data Without User Identifiers [79.36212347601223]
We propose to let each mobile device maintain a user-specific distribution to dynamically generate user embeddings.
To prevent the cloud from tracking users via uploaded embeddings, the local distributions of different users should either be derived from a linearly dependent space.
Evaluation on both public and industrial datasets reveals a remarkable improvement in accuracy from incorporating anonymous user embeddings.
arXiv Detail & Related papers (2025-01-10T15:46:19Z) - Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
Browser fingerprinting is a growing technique for identifying and tracking users online without traditional methods like cookies.
This paper gives an overview by examining the various fingerprinting techniques and analyzes the entropy and uniqueness of the collected data.
arXiv Detail & Related papers (2024-11-18T20:32:31Z) - How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
Browser fingerprinting can be used to identify and track users across the Web, even without cookies.
This technique and resulting privacy risks have been studied for over a decade.
We provide a first-of-its-kind dataset to enable further research.
arXiv Detail & Related papers (2024-10-09T14:51:58Z) - The First Early Evidence of the Use of Browser Fingerprinting for Online Tracking [10.98528003128308]
It is imperative to address the mounting concerns regarding the utilization of browser fingerprinting in the realm of online advertising.
This paper introduces FPTrace, a framework to assess fingerprinting-based user tracking by analyzing ad changes from browser fingerprinting adjustments.
arXiv Detail & Related papers (2024-09-24T01:39:16Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
fingerprint leakage from social media raises a strong desire for anonymizing shared images.
To guard the fingerprint leakage, adversarial attack emerges as a solution by adding imperceptible perturbations on images.
We propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the mentioned problems.
arXiv Detail & Related papers (2022-08-23T02:20:46Z) - Uncovering Fingerprinting Networks. An Analysis of In-Browser Tracking
using a Behavior-based Approach [0.0]
This thesis explores the current state of browser fingerprinting on the internet.
We implement FPNET to identify fingerprinting scripts on large sets of websites by observing their behavior.
We track down companies like Google, Yandex, Maxmind, Sift, or FingerprintJS.
arXiv Detail & Related papers (2022-08-15T18:06:25Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
A medium-size fake fingerprint database is described and two different fingerprint verification systems are evaluated on it.
Results for an optical and a thermal sweeping sensors are given.
arXiv Detail & Related papers (2022-07-11T12:22:52Z) - Locally Authenticated Privacy-preserving Voice Input [10.82818142802482]
Service providers must authenticate their users, although individuals may wish to maintain privacy.
Preserving privacy while performing authentication is challenging, particularly where adversaries can use biometric data to train transformation tools.
We introduce a secure, flexible privacy-preserving system to capture and store an on-device fingerprint of the users' raw signals.
arXiv Detail & Related papers (2022-05-27T14:56:01Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.