What Matters to Enhance Traffic Rule Compliance of Imitation Learning for End-to-End Autonomous Driving
- URL: http://arxiv.org/abs/2309.07808v3
- Date: Thu, 12 Sep 2024 08:38:39 GMT
- Title: What Matters to Enhance Traffic Rule Compliance of Imitation Learning for End-to-End Autonomous Driving
- Authors: Hongkuan Zhou, Wei Cao, Aifen Sui, Zhenshan Bing,
- Abstract summary: We proposed P-CSG, a penalty-based imitation learning approach with contrastive-based cross semantics generation sensor fusion technologies.
In this paper, we introduce three penalties - red light, stop sign, and curvature speed penalty to make the agent more sensitive to traffic rules.
We conducted robustness evaluations against adversarial attacks like FGSM and Dot attacks, revealing a substantial increase in robustness compared to other baseline models.
- Score: 10.191916541924813
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: End-to-end autonomous driving, where the entire driving pipeline is replaced with a single neural network, has recently gained research attention because of its simpler structure and faster inference time. Despite this appealing approach largely reducing the complexity in the driving pipeline, it also leads to safety issues because the trained policy is not always compliant with the traffic rules. In this paper, we proposed P-CSG, a penalty-based imitation learning approach with contrastive-based cross semantics generation sensor fusion technologies to increase the overall performance of end-to-end autonomous driving. In this method, we introduce three penalties - red light, stop sign, and curvature speed penalty to make the agent more sensitive to traffic rules. The proposed cross semantics generation helps to align the shared information of different input modalities. We assessed our model's performance using the CARLA Leaderboard - Town 05 Long Benchmark and Longest6 Benchmark, achieving 8.5% and 2.0% driving score improvement compared to the baselines. Furthermore, we conducted robustness evaluations against adversarial attacks like FGSM and Dot attacks, revealing a substantial increase in robustness compared to other baseline models. More detailed information can be found at https://hk-zh.github.io/p-csg-plus.
Related papers
- DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
This paper collects a comprehensive end-to-end driving dataset named DriveCoT.
It contains sensor data, control decisions, and chain-of-thought labels to indicate the reasoning process.
We propose a baseline model called DriveCoT-Agent, trained on our dataset, to generate chain-of-thought predictions and final decisions.
arXiv Detail & Related papers (2024-03-25T17:59:01Z) - Reinforcement Learning with Latent State Inference for Autonomous On-ramp Merging under Observation Delay [6.0111084468944]
We introduce the Lane-keeping, Lane-changing with Latent-state Inference and Safety Controller (L3IS) agent.
L3IS is designed to perform the on-ramp merging task safely without comprehensive knowledge about surrounding vehicles' intents or driving styles.
We present an augmentation of this agent called AL3IS that accounts for observation delays, allowing the agent to make more robust decisions in real-world environments.
arXiv Detail & Related papers (2024-03-18T15:02:46Z) - Partial End-to-end Reinforcement Learning for Robustness Against Modelling Error in Autonomous Racing [0.0]
This paper addresses the issue of increasing the performance of reinforcement learning (RL) solutions for autonomous racing cars.
We propose a partial end-to-end algorithm that decouples the planning and control tasks.
By leveraging the robustness of a classical controller, our partial end-to-end driving algorithm exhibits better robustness towards model mismatches than standard end-to-end algorithms.
arXiv Detail & Related papers (2023-12-11T14:27:10Z) - Penalty-Based Imitation Learning With Cross Semantics Generation Sensor
Fusion for Autonomous Driving [1.2749527861829049]
In this paper, we provide a penalty-based imitation learning approach to integrate multiple modalities of information.
We observe a remarkable increase in the driving score by more than 12% when compared to the state-of-the-art (SOTA) model, InterFuser.
Our model achieves this performance enhancement while achieving a 7-fold increase in inference speed and reducing the model size by approximately 30%.
arXiv Detail & Related papers (2023-03-21T14:29:52Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Integrated Decision and Control for High-Level Automated Vehicles by
Mixed Policy Gradient and Its Experiment Verification [10.393343763237452]
This paper presents a self-evolving decision-making system based on the Integrated Decision and Control (IDC)
An RL algorithm called constrained mixed policy gradient (CMPG) is proposed to consistently upgrade the driving policy of the IDC.
Experiment results show that boosting by data, the system can achieve better driving ability over model-based methods.
arXiv Detail & Related papers (2022-10-19T14:58:41Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z) - Leveraging the Capabilities of Connected and Autonomous Vehicles and
Multi-Agent Reinforcement Learning to Mitigate Highway Bottleneck Congestion [2.0010674945048468]
We present an RL-based multi-agent CAV control model to operate in mixed traffic.
The results suggest that even at CAV percent share of corridor traffic as low as 10%, CAVs can significantly mitigate bottlenecks in highway traffic.
arXiv Detail & Related papers (2020-10-12T03:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.