論文の概要: MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning
- arxiv url: http://arxiv.org/abs/2309.07915v3
- Date: Wed, 20 Mar 2024 16:17:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 22:37:29.181702
- Title: MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning
- Title(参考訳): MMICL:マルチモーダルインコンテキスト学習による視覚言語モデルの構築
- Authors: Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma, Kaikai An, Liang Chen, Zixuan Liu, Sheng Wang, Wenjuan Han, Baobao Chang,
- Abstract要約: 大規模言語モデル(LLM)によって強化された視覚言語モデル(VLM)は、急速に人気が高まっている。
マルチモーダル・インコンテキスト・ラーニング(MMICL)を用いた視覚言語モデルを導入し,VLMがマルチモーダル入力を効率的に処理できるようにする。
実験により,MMICLは多種多様な視覚言語タスクにおいて,最先端のゼロショット性能を実現することを確認した。
- 参考スコア(独自算出の注目度): 42.68425777473114
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Since the resurgence of deep learning, vision-language models (VLMs) enhanced by large language models (LLMs) have grown exponentially in popularity. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images, making VLMs less effective in downstream vision-language tasks. In this paper, we address the limitation above by 1) introducing vision-language Model with Multi-Modal In-Context Learning(MMICL), a new approach to allow the VLM to deal with multi-modal inputs efficiently; 2) proposing a novel context scheme to augment the in-context learning ability of the VLM; 3) constructing the Multi-modal In-Context Learning (MIC) dataset, designed to enhance the VLM's ability to understand complex multi-modal prompts. Our experiments confirm that MMICL achieves new state-of-the-art zero-shot performance on a wide range of general vision-language tasks, especially for complex benchmarks, including MME and MMBench. Our analysis demonstrates that MMICL effectively tackles the challenge of complex multi-modal prompt understanding and emerges the impressive ICL ability. Furthermore, we observe that MMICL successfully alleviates language bias in VLMs, a common issue for VLMs that often leads to hallucination when faced with extensive textual context. Our code, dataset, dataset tool, and model are available at https://github.com/PKUnlp-icler/MIC
- Abstract(参考訳): ディープラーニングの復活以来,大規模言語モデル (LLM) によって強化された視覚言語モデル (VLM) が急速に普及してきた。
しかし、LLMは背景知識やタスク情報をコンテキスト内学習に利用できるが、多くのVLMは複雑なマルチモーダルプロンプトを複数の画像で理解することに苦慮しているため、VLMは下流の視覚言語タスクでは効果が低い。
本稿では,上述の限界に対処する。
1)Multi-Modal In-Context Learning(MMICL)を用いた視覚言語モデルの導入。
2) VLMの文脈内学習能力を高めるための新しい文脈スキームの提案
3)Multi-modal In-Context Learning (MIC)データセットの構築。
実験の結果,MME や MMBench などの複雑なベンチマークにおいて,多種多様な視覚言語タスクにおいて,MMICL が新たなゼロショット性能を実現することを確認した。
解析の結果,MMICLは複雑なマルチモーダル素早い理解の課題に効果的に取り組み,印象的なICL能力を実現していることがわかった。
さらに,MMICL が VLM の言語バイアスを軽減することに成功していることも確認した。
私たちのコード、データセット、データセットツール、モデルはhttps://github.com/PKUnlp-icler/MICで利用可能です。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - VL-ICL Bench: The Devil in the Details of Multimodal In-Context Learning [12.450293825734313]
大規模言語モデル(LLM)は、創発的な文脈内学習(ICL)を示すことで有名である。
本研究では,マルチモーダルインコンテキスト学習のためのベンチマークVL-ICL Benchを提案する。
我々は,このベンチマークスイートに対して最先端のVLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-03-19T21:31:56Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z) - Towards Vision Enhancing LLMs: Empowering Multimodal Knowledge Storage
and Sharing in LLMs [72.49064988035126]
マルチモーダル大規模言語モデル(MLLM)の強化を目的としたMKS2という手法を提案する。
具体的には、LLMの内部ブロックに組み込まれたコンポーネントであるModular Visual Memoryを導入し、オープンワールドの視覚情報を効率的に保存するように設計されている。
実験により,MKS2は物理的・常識的な知識を必要とする文脈において,LLMの推論能力を大幅に増強することが示された。
論文 参考訳(メタデータ) (2023-11-27T12:29:20Z) - On the Performance of Multimodal Language Models [4.677125897916577]
本研究は、異なるマルチモーダル命令チューニングアプローチの比較分析を行う。
大規模言語モデルにマルチモーダル機能を組み込む際に,アーキテクチャ選択を導く上で重要な洞察を明らかにする。
論文 参考訳(メタデータ) (2023-10-04T23:33:36Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
MLLM(Multi-modal large language model)は、大規模言語モデル(LLM)に基づいて訓練される。
マルチモーダルなタスクでは優れているが、MLLMの純粋なNLP能力はしばしば過小評価され、テストされていない。
LLMをMLLMに移行するための一般的な戦略である視覚的インストラクションチューニングは、予期せぬ、興味深いことに、改善された真理性と倫理的整合性の両方を達成するのに役立ちます。
論文 参考訳(メタデータ) (2023-09-13T17:57:21Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z) - MIMIC-IT: Multi-Modal In-Context Instruction Tuning [44.879418596312554]
本稿では,280万のマルチモーダル・インストラクション・レスポンス・ペアからなるデータセットについて述べる。
MIMIC-ITデータセットを用いて、Otterはマルチモーダル認識、推論、文脈内学習において顕著な習熟度を示した。
我々はMIMIC-ITデータセット、命令応答型コレクションパイプライン、ベンチマーク、オッターモデルをリリースする。
論文 参考訳(メタデータ) (2023-06-08T17:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。