論文の概要: Complex-Valued Neural Networks for Data-Driven Signal Processing and
Signal Understanding
- arxiv url: http://arxiv.org/abs/2309.07948v1
- Date: Thu, 14 Sep 2023 16:55:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 17:05:34.813560
- Title: Complex-Valued Neural Networks for Data-Driven Signal Processing and
Signal Understanding
- Title(参考訳): データ駆動信号処理と信号理解のための複素値ニューラルネットワーク
- Authors: Josiah W. Smith
- Abstract要約: 複雑な評価されたニューラルネットワークは、信号処理、センシング、通信領域にわたる多くのタスクにおいて優れたモデリング性能を誇っている。
本稿では,PyTorch上に構築された複雑なニューラルネットワーク操作とアーキテクチャのための軽量インタフェースの実装を目的としたパッケージの概要を述べる。
- 参考スコア(独自算出の注目度): 1.2691047660244337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex-valued neural networks have emerged boasting superior modeling
performance for many tasks across the signal processing, sensing, and
communications arenas. However, developing complex-valued models currently
demands development of basic deep learning operations, such as linear or
convolution layers, as modern deep learning frameworks like PyTorch and Tensor
flow do not adequately support complex-valued neural networks. This paper
overviews a package built on PyTorch with the intention of implementing
light-weight interfaces for common complex-valued neural network operations and
architectures. Similar to natural language understanding (NLU), which as
recently made tremendous leaps towards text-based intelligence, RF Signal
Understanding (RFSU) is a promising field extending conventional signal
processing algorithms using a hybrid approach of signal mechanics-based insight
with data-driven modeling power. Notably, we include efficient implementations
for linear, convolution, and attention modules in addition to activation
functions and normalization layers such as batchnorm and layernorm.
Additionally, we include efficient implementations of manifold-based
complex-valued neural network layers that have shown tremendous promise but
remain relatively unexplored in many research contexts. Although there is an
emphasis on 1-D data tensors, due to a focus on signal processing,
communications, and radar data, many of the routines are implemented for 2-D
and 3-D data as well. Specifically, the proposed approach offers a useful set
of tools and documentation for data-driven signal processing research and
practical implementation.
- Abstract(参考訳): 複雑な値を持つニューラルネットワークは、信号処理、センシング、通信の分野で多くのタスクにおいて優れたモデリング性能を誇示している。
しかし、複雑な値モデルの開発は現在、線形層や畳み込み層のような基本的なディープラーニング操作の開発を必要としており、pytorchやtensor flowのような現代のディープラーニングフレームワークは、複雑な値のニューラルネットワークを十分にサポートしていない。
本稿では,PyTorch上に構築された複雑なニューラルネットワーク操作とアーキテクチャのための軽量インタフェースの実装を目的としたパッケージの概要を述べる。
自然言語理解(NLU)と同様に、最近テキストベースインテリジェンスへの飛躍的な飛躍を遂げたRF信号理解(RFSU)は、データ駆動モデリング能力を備えた信号力学に基づく洞察のハイブリッドアプローチを用いて、従来の信号処理アルゴリズムを拡張する有望な分野である。
特に、リニア、畳み込み、アテンションモジュールの効率的な実装に加えて、アクティベーション関数やバッチノルムやレイヤノルムなどの正規化層も含む。
さらに、非常に有望だが多くの研究の文脈で比較的未調査のままである多様体ベースの複素値ニューラルネットワーク層を効率的に実装することを含む。
信号処理、通信、レーダーデータに焦点を当てた1次元データテンソルに重点が置かれているが、多くのルーチンは2次元データや3次元データにも実装されている。
特に、提案手法は、データ駆動信号処理研究と実用的な実装のための有用なツールセットとドキュメントを提供する。
関連論文リスト
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - OpenHLS: High-Level Synthesis for Low-Latency Deep Neural Networks for
Experimental Science [0.6571063542099524]
本稿では,ディープニューラルネットワークの高レベル表現を低レベル表現に変換するための,オープンソースの軽量コンパイラフレームワークを提案する。
我々はOpenHLSがスループット4.8$mu$s/sampleでネットワークの実装を作成できることを示した。
論文 参考訳(メタデータ) (2023-02-13T23:25:55Z) - Learning with Multigraph Convolutional Filters [153.20329791008095]
MSPモデルに基づいて情報を処理する階層構造として多グラフ畳み込みニューラルネットワーク(MGNN)を導入する。
また,MGNNにおけるフィルタ係数のトラクタブルな計算手法と,レイヤ間で転送される情報の次元性を低減するための低コストな手法を開発した。
論文 参考訳(メタデータ) (2022-10-28T17:00:50Z) - An intertwined neural network model for EEG classification in
brain-computer interfaces [0.6696153817334769]
脳コンピュータインタフェース(BCI)は、脳とコンピュータまたは外部装置との間の非刺激的直接的、時折双方向通信リンクである。
マルチクラスモータ画像分類における最先端性能を実現するために特別に設計されたディープニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-04T09:00:34Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
将来的な通信網は、異種無線デバイスの成長に対応するために、少ないスペクトルに対処する必要がある。
我々は、深層ニューラルネットワークに基づくマルチタスク学習フレームワークの可能性を利用して、変調と信号分類タスクを同時に学習する。
公共利用のための包括的ヘテロジニアス無線信号データセットを提供する。
論文 参考訳(メタデータ) (2022-02-26T14:51:02Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Supervised Learning with First-to-Spike Decoding in Multilayer Spiking
Neural Networks [0.0]
本稿では,多層スパイキングニューラルネットワークを学習して分類問題を解くための教師あり学習手法を提案する。
提案した学習規則は、隠れニューロンが発する複数のスパイクをサポートし、決定論的出力層によって生成された最初のスパイク応答に依存することにより安定である。
また、入力データのコンパクト表現を形成するために、いくつかの異なるスパイクベースの符号化戦略についても検討する。
論文 参考訳(メタデータ) (2020-08-16T15:34:48Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。