論文の概要: Large Intestine 3D Shape Refinement Using Point Diffusion Models for Digital Phantom Generation
- arxiv url: http://arxiv.org/abs/2309.08289v3
- Date: Fri, 29 Aug 2025 08:17:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:10.769892
- Title: Large Intestine 3D Shape Refinement Using Point Diffusion Models for Digital Phantom Generation
- Title(参考訳): 点拡散モデルを用いた大腸3次元形状再構成によるデジタルファントム生成
- Authors: Kaouther Mouheb, Mobina Ghojogh Nejad, Lavsen Dahal, Ehsan Samei, Kyle J. Lafata, W. Paul Segars, Joseph Y. Lo,
- Abstract要約: 大腸の3D表現性を高めるための新しい条件付きLAtent Point-DiffusionモデルであるCLAPを提案する。
我々は大域的および局所的な潜在形状表現を学習するために階層的変分オートエンコーダを用いる。
その後、事前訓練された表面再構成モデルを用いて、洗練された点雲をメッシュに変換する。
- 参考スコア(独自算出の注目度): 0.8860189031441993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate 3D modeling of human organs is critical for constructing digital phantoms in virtual imaging trials. However, organs such as the large intestine remain particularly challenging due to their complex geometry and shape variability. We propose CLAP, a novel Conditional LAtent Point-diffusion model that combines geometric deep learning with denoising diffusion models to enhance 3D representations of the large intestine. Given point clouds sampled from segmentation masks, we employ a hierarchical variational autoencoder to learn both global and local latent shape representations. Two conditional diffusion models operate within this latent space to refine the organ shape. A pretrained surface reconstruction model is then used to convert the refined point clouds into meshes. CLAP achieves substantial improvements in shape modeling accuracy, reducing Chamfer distance by 26% and Hausdorff distance by 36% relative to the initial suboptimal shapes. This approach offers a robust and extensible solution for high-fidelity organ modeling, with potential applicability to a wide range of anatomical structures.
- Abstract(参考訳): 人間の臓器の正確な3Dモデリングは、仮想画像実験においてデジタルファントムを構築する上で重要である。
しかし、腸のような臓器は、複雑な形状と形状の多様性のため、特に困難である。
本稿では,幾何学的深層学習とデノナイズド拡散モデルを組み合わせることで,大腸の3次元表現を向上する新しい条件付きLAtent Point-DiffusionモデルであるCLAPを提案する。
セグメンテーションマスクから採取した点雲を考慮し,大域的および局所的な潜在形状表現を学習するために階層的変分オートエンコーダを用いる。
2つの条件拡散モデルがこの潜伏空間内で動作し、臓器の形状を洗練させる。
その後、事前訓練された表面再構成モデルを用いて、洗練された点雲をメッシュに変換する。
CLAPは形状モデリング精度を大幅に改善し、チャンファー距離を26%、ハウスドルフ距離を36%削減した。
このアプローチは、幅広い解剖学的構造に適用可能な、高忠実度臓器モデリングのための堅牢で拡張可能なソリューションを提供する。
関連論文リスト
- SparseFlex: High-Resolution and Arbitrary-Topology 3D Shape Modeling [79.56581753856452]
SparseFlexは、新しいスパース構造のアイソサーフェス表現で、レンダリング損失から最大10243ドルの解像度で、差別化可能なメッシュ再構築を可能にする。
SparseFlexは、高解像度で差別化可能なメッシュ再構成とレンダリングロスによる生成を可能にすることで、3D形状の表現とモデリングの最先端性を著しく向上させる。
論文 参考訳(メタデータ) (2025-03-27T17:46:42Z) - MultiGO: Towards Multi-level Geometry Learning for Monocular 3D Textured Human Reconstruction [4.457326808146675]
本稿では, 単眼画像から3次元布体を再構築する研究課題について検討する。
既存のアプローチでは、事前訓練されたSMPL(-X)推定モデルや生成モデルを利用して、人間の再構築に補助情報を提供する。
技術的には,骨格レベルの強化,関節レベルの強化,輪郭レベルの改良モジュールの3つの重要なコンポーネントを設計する。
論文 参考訳(メタデータ) (2024-12-04T08:06:06Z) - Part-aware Shape Generation with Latent 3D Diffusion of Neural Voxel Fields [50.12118098874321]
ニューラルボクセル場に対する潜在3次元拡散過程を導入し,高分解能で生成を可能にする。
部分符号を神経ボクセル場に統合し、正確な部分分解を導出するために、部分認識形状復号器を導入する。
その結果,既存の最先端手法よりも優れた部品認識形状生成において,提案手法の優れた生成能力を示した。
論文 参考訳(メタデータ) (2024-05-02T04:31:17Z) - High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
内視鏡画像に適用したNeuSを1フレームの深度マップで補足した新しい大腸部分再建法を提案する。
本手法は, 大腸切片を完全にレンダリングし, 表面の見えない部分を捕捉する際の異常な精度を示す。
このブレークスルーは、安定的で一貫してスケールされた再建を達成するための道を開き、がんスクリーニングの手順と治療介入の質を高めることを約束する。
論文 参考訳(メタデータ) (2024-04-20T18:06:26Z) - A Quantitative Evaluation of Dense 3D Reconstruction of Sinus Anatomy
from Monocular Endoscopic Video [8.32570164101507]
内視鏡的シーケンスと光学的トラッキングを用いた洞再建のための自己教師型アプローチの定量的解析を行った。
以上の結果から, 生成した復元は解剖学的に高い一致を示し, 平均点間誤差は0.91mmであった。
ポーズと深さ推定の不正確さがこの誤りに等しく寄与し、より短い軌跡を持つ局所的に一貫したシーケンスがより正確な再構成をもたらすことを確認した。
論文 参考訳(メタデータ) (2023-10-22T17:11:40Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
手法は、Hermite-Gaussianモードとその重ね合わせのオーバーコンプリートベースで、画像平面内のフィールドの空間モード成分を測定することで構成される。
ディープニューラルネットワークは、これらの測定からオブジェクトを再構築するために使用される。
論文 参考訳(メタデータ) (2023-04-19T15:53:09Z) - Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models [33.343489006271255]
拡散モデルは、高品質なサンプルを持つ新しい最先端の生成モデルとして登場した。
そこで本研究では, モデルに基づく2次元拡散を, 全次元にわたるコヒーレントな再構成を達成できるように, 実験時の残りの方向で先行する2次元拡散を拡大することを提案する。
提案手法は,1つのコモディティGPU上で動作可能であり,新しい最先端技術を確立する。
論文 参考訳(メタデータ) (2022-11-19T10:32:21Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
本稿では,人体に対する新しい暗黙の表現法を提案する。
完全に微分可能で、非交叉形状で最適化可能であり、潜在空間を映し出す。
我々のモデルは、よく設計された損失を伴う、水密でない生データを直接訓練し、微調整することができる。
論文 参考訳(メタデータ) (2021-11-30T04:10:57Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
解剖学的構造の3次元デライン化は、医用画像解析の基本的な目標である。
ディープラーニング以前は、解剖学的制約を課し高品質の表面を作り出す統計的形状モデルはコア技術だった。
我々は,CNNの表現力とSSMの頑健さを合体させるデライン化の新しい手法であるディープ暗黙的統計的形状モデル(DISSMs)を提案する。
論文 参考訳(メタデータ) (2021-04-07T01:15:06Z) - Deep Learning compatible Differentiable X-ray Projections for Inverse
Rendering [8.926091372824942]
距離マップを生成するために、メッシュ内部の線状構造によって移動される距離を導出して微分可能とする。
骨盤の実際の2次元蛍光画像から3次元モデルを再構成する逆問題(逆問題)を解くことにより,その応用を示す。
論文 参考訳(メタデータ) (2021-02-04T22:06:05Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。