論文の概要: MultiGO: Towards Multi-level Geometry Learning for Monocular 3D Textured Human Reconstruction
- arxiv url: http://arxiv.org/abs/2412.03103v1
- Date: Wed, 04 Dec 2024 08:06:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:08:14.064863
- Title: MultiGO: Towards Multi-level Geometry Learning for Monocular 3D Textured Human Reconstruction
- Title(参考訳): MultiGO: 単眼3次元テクスチャ再構築のための多段階幾何学学習を目指して
- Authors: Gangjian Zhang, Nanjie Yao, Shunsi Zhang, Hanfeng Zhao, Guoliang Pang, Jian Shu, Hao Wang,
- Abstract要約: 本稿では, 単眼画像から3次元布体を再構築する研究課題について検討する。
既存のアプローチでは、事前訓練されたSMPL(-X)推定モデルや生成モデルを利用して、人間の再構築に補助情報を提供する。
技術的には,骨格レベルの強化,関節レベルの強化,輪郭レベルの改良モジュールの3つの重要なコンポーネントを設計する。
- 参考スコア(独自算出の注目度): 4.457326808146675
- License:
- Abstract: This paper investigates the research task of reconstructing the 3D clothed human body from a monocular image. Due to the inherent ambiguity of single-view input, existing approaches leverage pre-trained SMPL(-X) estimation models or generative models to provide auxiliary information for human reconstruction. However, these methods capture only the general human body geometry and overlook specific geometric details, leading to inaccurate skeleton reconstruction, incorrect joint positions, and unclear cloth wrinkles. In response to these issues, we propose a multi-level geometry learning framework. Technically, we design three key components: skeleton-level enhancement, joint-level augmentation, and wrinkle-level refinement modules. Specifically, we effectively integrate the projected 3D Fourier features into a Gaussian reconstruction model, introduce perturbations to improve joint depth estimation during training, and refine the human coarse wrinkles by resembling the de-noising process of diffusion model. Extensive quantitative and qualitative experiments on two out-of-distribution test sets show the superior performance of our approach compared to state-of-the-art (SOTA) methods.
- Abstract(参考訳): 本稿では, 単眼画像から3次元布地を復元する研究課題について検討する。
単一ビュー入力の本来の曖昧さのため、既存のアプローチでは、事前訓練されたSMPL(-X)推定モデルや生成モデルを活用して、人間の再構築に補助情報を提供する。
しかし、これらの手法は一般的な人体形状のみを捉え、特定の幾何学的詳細を見落とし、不正確な骨格再構築、不正確な関節位置、不明瞭な布のしわをもたらす。
これらの問題に対して,我々は多段階幾何学学習フレームワークを提案する。
技術的には,骨格レベル向上,関節レベル増強,輪郭レベル改良モジュールの3つの重要なコンポーネントを設計する。
具体的には,提案した3Dフーリエ特徴をガウス再構成モデルに効果的に統合し,トレーニング中の関節深度推定を改善するために摂動を導入し,拡散モデルのデノイズ化プロセスに類似した人間の粗いしわを洗練する。
2つのアウト・オブ・ディストリビューション・テストセットの大規模定量および定性的実験は、最先端(SOTA)法と比較して、我々のアプローチの優れた性能を示している。
関連論文リスト
- MagicMan: Generative Novel View Synthesis of Humans with 3D-Aware Diffusion and Iterative Refinement [23.707586182294932]
単一画像再構成における既存の作業は、訓練データ不足や総合的な多視点知識の欠如による3次元不整合により、弱い一般化性に悩まされている。
単一の参照画像から高品質な新規ビュー画像を生成するために設計された,人間固有の多視点拡散モデルであるMagicManを紹介する。
論文 参考訳(メタデータ) (2024-08-26T12:10:52Z) - S3O: A Dual-Phase Approach for Reconstructing Dynamic Shape and Skeleton of Articulated Objects from Single Monocular Video [13.510513575340106]
単一の単眼映像から動的に調音された物体を再構成することは困難であり、限られた視点から形状、動き、カメラパラメータを共同で推定する必要がある。
可視形状や下層の骨格を含むパラメトリックモデルを効率的に学習する新しい2相法であるS3Oを提案する。
標準ベンチマークとPlanetZooデータセットの実験により、S3Oはより正確な3D再構成と可塑性骨格を提供し、最先端技術と比較してトレーニング時間を約60%短縮することを確認した。
論文 参考訳(メタデータ) (2024-05-21T09:01:00Z) - PGAHum: Prior-Guided Geometry and Appearance Learning for High-Fidelity Animatable Human Reconstruction [9.231326291897817]
我々はPGAHumを紹介した。PGAHumは、高忠実でアニマタブルな人体再構成のための、事前ガイダンス付き幾何学および外観学習フレームワークである。
我々はPGAHumの3つの主要モジュールにおける3次元人体前駆体を徹底的に利用し、複雑な細部と見えないポーズのフォトリアリスティックなビュー合成による高品質な幾何再構成を実現する。
論文 参考訳(メタデータ) (2024-04-22T04:22:30Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
本研究では,人間のポーズの変形をモデル化し,それに伴う拡散に基づく動きを事前に設計する手法を提案する。
動作中の3次元人間の骨格を復元する作業は3次元基準骨格の推定に分割する。
混合時空間NASfMformerを用いて、各フレームの3次元基準骨格と骨格変形を2次元観測シーケンスから同時に推定する。
論文 参考訳(メタデータ) (2023-08-18T16:41:57Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
本稿では,自由視点画像の合成に有効なフレームワークであるGeneralizable Model-based Neural Radiance Fieldsを提案する。
具体的には、多視点2D画像からの出現コードを幾何学的プロキシに登録するための幾何学誘導型アテンション機構を提案する。
論文 参考訳(メタデータ) (2023-03-24T03:32:02Z) - Neural Descent for Visual 3D Human Pose and Shape [67.01050349629053]
入力RGB画像から3次元のポーズと形状を復元するディープニューラルネットワーク手法を提案する。
我々は最近導入された表現力のあるボディ統計モデルGHUMに頼っている。
我々の方法論の中心は、HUmanNeural Descent (HUND)と呼ばれるアプローチの学習と最適化である。
論文 参考訳(メタデータ) (2020-08-16T13:38:41Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z) - HEMlets PoSh: Learning Part-Centric Heatmap Triplets for 3D Human Pose
and Shape Estimation [60.35776484235304]
本研究は, 中間状態部分熱マップトリプレット(HEMlets)を導入し, 検出された2次元関節を三次元空間に持ち上げる不確実性に対処しようとするものである。
HEMletsは3つのジョイントヒートマップを使用して、各骨格体部に対するエンドジョイントの相対的な深さ情報を表す。
Convolutional Network (ConvNet) は、入力画像からHEMletを予測し、次にボリュームのジョイント・ヒートマップレグレッションを学習する。
論文 参考訳(メタデータ) (2020-03-10T04:03:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。