Reconsidering evaluation practices in modular systems: On the
propagation of errors in MRI prostate cancer detection
- URL: http://arxiv.org/abs/2309.08381v1
- Date: Fri, 15 Sep 2023 13:15:09 GMT
- Title: Reconsidering evaluation practices in modular systems: On the
propagation of errors in MRI prostate cancer detection
- Authors: Erlend Sortland Rolfsnes, Philip Thangngat, Trygve Eftest{\o}l, Tobias
Nordstr\"om, Fredrik J\"aderling, Martin Eklund, Alvaro Fernandez-Quilez
- Abstract summary: Artificial intelligence (AI) systems can support radiological assessment by segmenting and classifying lesions in clinically significant (csPCa) and non-clinically significant (ncsPCa)
Our results depict the relevance of a holistic evaluation, accounting for all the sub-modules involved in the system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging has evolved as a key component for prostate cancer
(PCa) detection, substantially increasing the radiologist workload. Artificial
intelligence (AI) systems can support radiological assessment by segmenting and
classifying lesions in clinically significant (csPCa) and non-clinically
significant (ncsPCa). Commonly, AI systems for PCa detection involve an
automatic prostate segmentation followed by the lesion detection using the
extracted prostate. However, evaluation reports are typically presented in
terms of detection under the assumption of the availability of a highly
accurate segmentation and an idealistic scenario, omitting the propagation of
errors between modules. For that purpose, we evaluate the effect of two
different segmentation networks (s1 and s2) with heterogeneous performances in
the detection stage and compare it with an idealistic setting (s1:89.90+-2.23
vs 88.97+-3.06 ncsPCa, P<.001, 89.30+-4.07 and 88.12+-2.71 csPCa, P<.001). Our
results depict the relevance of a holistic evaluation, accounting for all the
sub-modules involved in the system.
Related papers
- Deep Radiomics Detection of Clinically Significant Prostate Cancer on Multicenter MRI: Initial Comparison to PI-RADS Assessment [0.0]
This study analyzed biparametric (T2W and DW) prostate MRI sequences of 615 patients (mean age, 63.1 +/- 7 years) from four datasets acquired between 2010 and 2020.
Deep radiomics machine learning model achieved comparable performance to PI-RADS assessment in csPCa detection at the patient-level but not at the lesion-level.
arXiv Detail & Related papers (2024-10-21T17:41:58Z) - Assessing the performance of deep learning-based models for prostate
cancer segmentation using uncertainty scores [1.0499611180329804]
The aim is to improve the workflow of prostate cancer detection and diagnosis.
The top-performing model is the Attention R2U-Net, achieving a mean Intersection over Union (IoU) of 76.3% and Dice Similarity Coefficient (DSC) of 85% for segmenting all zones.
arXiv Detail & Related papers (2023-08-09T01:38:58Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Lesion detection in contrast enhanced spectral mammography [0.0]
The recent emergence of neural networks models for the analysis of breast images has been a breakthrough in computer aided diagnostic.
This work proposes a deep-learning-based Computer Aided Diagnostic development for CESM recombined images able to detect lesions and classify cases.
arXiv Detail & Related papers (2022-07-20T06:49:02Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Fully Automatic Deep Learning Framework for Pancreatic Ductal
Adenocarcinoma Detection on Computed Tomography [0.0]
Early detection improves prognosis in pancreatic ductal adenocarcinoma (PDAC)
Current models still fail to identify small (2cm) lesions.
Deep learning models were used to develop an automatic framework for PDAC detection.
arXiv Detail & Related papers (2021-11-30T13:59:46Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
We propose a novel PCa detection network that incorporates a lesion-level cost-sensitive loss and an additional slice-level loss based on a lesion-to-slice mapping function.
Our experiments based on 290 clinical patients concludes that 1) The lesion-level FNR was effectively reduced from 0.19 to 0.10 and the lesion-level FPR was reduced from 1.03 to 0.66 by changing the lesion-level cost.
arXiv Detail & Related papers (2021-06-04T09:51:27Z) - End-to-end Prostate Cancer Detection in bpMRI via 3D CNNs: Effect of
Attention Mechanisms, Clinical Priori and Decoupled False Positive Reduction [0.0]
We present a novel 3D computer-aided detection and diagnosis (CAD) model for automated localization of clinically significant prostate cancer (csa) in bi-parametric MR imaging (bpMRI)
Deep attention mechanisms drive its detection network, targeting multi-resolution, salient structures and highly discriminative feature dimensions.
CNN-based models can be trained to detect biopsy-confirmed malignancies in an independent cohort.
arXiv Detail & Related papers (2021-01-08T22:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.