A new method of modeling the multi-stage decision-making process of CRT using machine learning with uncertainty quantification
- URL: http://arxiv.org/abs/2309.08415v4
- Date: Sun, 28 Apr 2024 15:33:12 GMT
- Title: A new method of modeling the multi-stage decision-making process of CRT using machine learning with uncertainty quantification
- Authors: Kristoffer Larsen, Chen Zhao, Joyce Keyak, Qiuying Sha, Diana Paez, Xinwei Zhang, Guang-Uei Hung, Jiangang Zou, Amalia Peix, Weihua Zhou,
- Abstract summary: The purpose of this study is to create a multi-stage machine learning model to predict cardiac resynchronization therapy (CRT) response for heart failure patients.
- Score: 8.540186345787244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aims. The purpose of this study is to create a multi-stage machine learning model to predict cardiac resynchronization therapy (CRT) response for heart failure (HF) patients. This model exploits uncertainty quantification to recommend additional collection of single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) variables if baseline clinical variables and features from electrocardiogram (ECG) are not sufficient. Methods. 218 patients who underwent rest-gated SPECT MPI were enrolled in this study. CRT response was defined as an increase in left ventricular ejection fraction (LVEF) > 5% at a 6+-1 month follow-up. A multi-stage ML model was created by combining two ensemble models: Ensemble 1 was trained with clinical variables and ECG; Ensemble 2 included Ensemble 1 plus SPECT MPI features. Uncertainty quantification from Ensemble 1 allowed for multi-stage decision-making to determine if the acquisition of SPECT data for a patient is necessary. The performance of the multi-stage model was compared with that of Ensemble models 1 and 2. Results. The response rate for CRT was 55.5% (n = 121) with overall male gender 61.0% (n = 133), an average age of 62.0+-11.8, and LVEF of 27.7+-11.0. The multi-stage model performed similarly to Ensemble 2 (which utilized the additional SPECT data) with AUC of 0.75 vs. 0.77, accuracy of 0.71 vs. 0.69, sensitivity of 0.70 vs. 0.72, and specificity 0.72 vs. 0.65, respectively. However, the multi-stage model only required SPECT MPI data for 52.7% of the patients across all folds. Conclusions. By using rule-based logic stemming from uncertainty quantification, the multi-stage model was able to reduce the need for additional SPECT MPI data acquisition without sacrificing performance.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
This study explores the use of Federated Learning (FL) for stenosis detection in coronary angiography images (CA)
Two heterogeneous datasets from two institutions were considered: dataset 1 includes 1219 images from 200 patients, which we acquired at the Ospedale Riuniti of Ancona (Italy)
dataset 2 includes 7492 sequential images from 90 patients from a previous study available in the literature.
arXiv Detail & Related papers (2023-10-30T11:13:40Z) - A new method using deep learning to predict the response to cardiac
resynchronization therapy [5.220522498181878]
The purpose of this study is to combine clinical variables, features from electrocardiogram (ECG), and parameters from assessment of cardiac function with polarmaps from gated SPECT MPI.
A DL model was constructed by combining a pre-trained VGG16 module and a multilayer perceptron.
The DL model demonstrated average AUC (0.83), accuracy (0.73), sensitivity (0.76), and specificity (0.69) surpassing the ML models and guideline criteria.
arXiv Detail & Related papers (2023-05-04T00:51:42Z) - DeepCOVID-Fuse: A Multi-modality Deep Learning Model Fusing Chest
X-Radiographs and Clinical Variables to Predict COVID-19 Risk Levels [8.593516170110203]
DeepCOVID-Fuse is a deep learning fusion model to predict risk levels in coronavirus patients.
The accuracy of DeepCOVID-Fuse trained on CXRs and clinical variables is 0.658, with an AUC of 0.842.
arXiv Detail & Related papers (2023-01-20T20:54:25Z) - Osteoporosis Prescreening using Panoramic Radiographs through a Deep
Convolutional Neural Network with Attention Mechanism [65.70943212672023]
Deep convolutional neural network (CNN) with an attention module can detect osteoporosis on panoramic radiographs.
dataset of 70 panoramic radiographs (PRs) from 70 different subjects of age between 49 to 60 was used.
arXiv Detail & Related papers (2021-10-19T00:03:57Z) - Multi-institutional Validation of Two-Streamed Deep Learning Method for
Automated Delineation of Esophageal Gross Tumor Volume using planning-CT and
FDG-PETCT [14.312659667401302]
Current clinical workflow for esophageal gross tumor volume (GTV) contouring relies on manual delineation of high labor-costs and interuser variability.
To validate the clinical applicability of a deep learning (DL) multi-modality esophageal GTV contouring model, developed at 1 institution whereas tested at multiple ones.
arXiv Detail & Related papers (2021-10-11T13:56:09Z) - A framework for quantitative analysis of Computed Tomography images of
viral pneumonitis: radiomic features in COVID and non-COVID patients [0.0]
1028 chest CT image of patients with positive swab were segmented automatically for lung extraction.
A Gaussian model was applied to calculate quantitative metrics (QM) describing well-aerated and ill portions of the lungs.
Radiomic features (RF) of first and second order were extracted from bilateral lungs.
Four artificial intelligence-based models for classifying patients with COVID and non-COVID viral pneumonia were developed.
arXiv Detail & Related papers (2021-09-28T15:22:24Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - Rapid quantification of COVID-19 pneumonia burden from computed
tomography with convolutional LSTM networks [1.0072268949897432]
We propose a new fully automated deep learning framework for rapid quantification and differentiation between lung lesions in COVID-19 pneumonia.
The performance of the method was evaluated on CT data sets from 197 patients with positive reverse transcription polymerase chain reaction test result for SARS-CoV-2.
arXiv Detail & Related papers (2021-03-31T22:09:14Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
We propose a joint classification and regression method to determine whether the patient would develop severe symptoms in the later time.
To do this, the proposed method takes into account 1) the weight for each sample to reduce the outliers' influence and explore the problem of imbalance classification.
Our proposed method yields 76.97% of accuracy for predicting the severe cases, 0.524 of the correlation coefficient, and 0.55 days difference for the converted time.
arXiv Detail & Related papers (2020-05-07T12:16:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.