Efficient and robust Sensor Placement in Complex Environments
- URL: http://arxiv.org/abs/2309.08545v1
- Date: Fri, 15 Sep 2023 17:10:19 GMT
- Title: Efficient and robust Sensor Placement in Complex Environments
- Authors: Lukas Taus, Yen-Hsi Richard Tsai
- Abstract summary: This paper addresses the problem of efficient and unobstructed surveillance or communication in complex environments.
We propose a greedy algorithm to achieve the objective.
Deep learning techniques are used to accelerate the evaluation of the objective function.
- Score: 1.1421942894219899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of efficient and unobstructed surveillance or
communication in complex environments. On one hand, one wishes to use a minimal
number of sensors to cover the environment. On the other hand, it is often
important to consider solutions that are robust against sensor failure or
adversarial attacks. This paper addresses these challenges of designing minimal
sensor sets that achieve multi-coverage constraints -- every point in the
environment is covered by a prescribed number of sensors. We propose a greedy
algorithm to achieve the objective. Further, we explore deep learning
techniques to accelerate the evaluation of the objective function formulated in
the greedy algorithm. The training of the neural network reveals that the
geometric properties of the data significantly impact the network's
performance, particularly at the end stage. By taking into account these
properties, we discuss the differences in using greedy and $\epsilon$-greedy
algorithms to generate data and their impact on the robustness of the network.
Related papers
- Evolutionary Greedy Algorithm for Optimal Sensor Placement Problem in Urban Sewage Surveillance [6.133464220178637]
We propose a novel evolutionary greedy algorithm (EG) to enable efficient and effective optimization for large-scale directed networks.
The proposed model is evaluated on both small-scale synthetic networks and a large-scale, real-world sewage network in Hong Kong.
arXiv Detail & Related papers (2024-09-25T09:27:51Z) - Optimizing Sensor Network Design for Multiple Coverage [0.9668407688201359]
We introduce a new objective function for the greedy (next-best-view) algorithm to design efficient and robust sensor networks.
We also introduce a Deep Learning model to accelerate the algorithm for near real-time computations.
arXiv Detail & Related papers (2024-05-15T05:13:20Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
The dynamic and intricate nature of the open environment poses novel and formidable challenges to object detectors.
This paper aims to conduct a comprehensive review and analysis of object detectors in open environments.
We propose a framework that includes four quadrants (i.e., out-of-domain, out-of-category, robust learning, and incremental learning) based on the dimensions of the data / target changes.
arXiv Detail & Related papers (2024-03-24T19:32:39Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Sensor Placement for Learning in Flow Networks [6.680930089714339]
This paper investigates the sensor placement problem for networks.
We first formalize the problem under a flow conservation assumption and show that it is NP-hard to place a fixed set of sensors optimally.
Next, we propose an efficient and adaptive greedy for sensor placement that scales to large networks.
arXiv Detail & Related papers (2023-12-12T01:08:08Z) - Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces [3.729242965449096]
The sensor placement problem is a common problem that arises when monitoring correlated phenomena.
We present a novel formulation to the SP problem based on variational approximation that can be optimized using gradient descent.
arXiv Detail & Related papers (2023-02-28T19:10:12Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Bayesian Imitation Learning for End-to-End Mobile Manipulation [80.47771322489422]
Augmenting policies with additional sensor inputs, such as RGB + depth cameras, is a straightforward approach to improving robot perception capabilities.
We show that using the Variational Information Bottleneck to regularize convolutional neural networks improves generalization to held-out domains.
We demonstrate that our method is able to help close the sim-to-real gap and successfully fuse RGB and depth modalities.
arXiv Detail & Related papers (2022-02-15T17:38:30Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
This paper investigates the problem of providing ultra-reliable and energy-efficient virtual reality (VR) experiences for wireless mobile users.
To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users, a coordinated multipoint (CoMP) transmission technique and millimeter wave (mmWave) communications are exploited.
arXiv Detail & Related papers (2021-06-03T08:35:10Z) - On the Role of Sensor Fusion for Object Detection in Future Vehicular
Networks [25.838878314196375]
We evaluate how using a combination of different sensors affects the detection of the environment in which the vehicles move and operate.
The final objective is to identify the optimal setup that would minimize the amount of data to be distributed over the channel.
arXiv Detail & Related papers (2021-04-23T18:58:37Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.