論文の概要: Local Differential Privacy in Graph Neural Networks: a Reconstruction
Approach
- arxiv url: http://arxiv.org/abs/2309.08569v1
- Date: Fri, 15 Sep 2023 17:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 13:29:47.936781
- Title: Local Differential Privacy in Graph Neural Networks: a Reconstruction
Approach
- Title(参考訳): グラフニューラルネットワークにおける局所微分プライバシー : 再構成アプローチ
- Authors: Karuna Bhaila and Wen Huang and Yongkai Wu and Xintao Wu
- Abstract要約: ユーザレベルでノードのプライバシを提供するための学習フレームワークを提案する。
我々は、分散化された微分プライバシーの概念、すなわちローカル微分プライバシに焦点を当てる。
摂動データから特徴やラベルを近似する再構成手法を開発した。
- 参考スコア(独自算出の注目度): 18.57176144101623
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks have achieved tremendous success in modeling complex
graph data in a variety of applications. However, there are limited studies
investigating privacy protection in GNNs. In this work, we propose a learning
framework that can provide node privacy at the user level, while incurring low
utility loss. We focus on a decentralized notion of Differential Privacy,
namely Local Differential Privacy, and apply randomization mechanisms to
perturb both feature and label data at the node level before the data is
collected by a central server for model training. Specifically, we investigate
the application of randomization mechanisms in high-dimensional feature
settings and propose an LDP protocol with strict privacy guarantees. Based on
frequency estimation in statistical analysis of randomized data, we develop
reconstruction methods to approximate features and labels from perturbed data.
We also formulate this learning framework to utilize frequency estimates of
graph clusters to supervise the training procedure at a sub-graph level.
Extensive experiments on real-world and semi-synthetic datasets demonstrate the
validity of our proposed model.
- Abstract(参考訳): グラフニューラルネットワークは、様々なアプリケーションで複雑なグラフデータをモデリングすることに成功した。
しかし、gnnのプライバシー保護に関する研究は限られている。
本研究では,ユーザレベルでノードのプライバシを提供するための学習フレームワークを提案する。
我々は,偏微分プライバシの分散概念,すなわち局所微分プライバシに着目し,モデルトレーニングのための中央サーバによって収集される前に,特徴量とラベル値の両方をノードレベルで摂動させるランダム化機構を適用する。
具体的には,高次元特徴設定におけるランダム化機構の適用について検討し,厳格なプライバシー保証を有するldpプロトコルを提案する。
ランダム化データの統計的解析における周波数推定に基づいて,摂動データから特徴やラベルを近似する再構成法を開発した。
また、この学習フレームワークを定式化し、グラフクラスタの頻度推定を利用して、サブグラフレベルでのトレーニング手順を監督する。
実世界および半合成データセットに関する広範な実験により,提案モデルの有効性が示された。
関連論文リスト
- Differential Privacy Regularization: Protecting Training Data Through Loss Function Regularization [49.1574468325115]
ニューラルネットワークに基づく機械学習モデルのトレーニングには、機密情報を含む大きなデータセットが必要である。
差分的にプライベートなSGD [DP-SGD] は、新しいモデルをトレーニングするために標準勾配降下アルゴリズム(SGD)を変更する必要がある。
より効率的な方法で同じ目標を達成するための新しい正規化戦略が提案されている。
論文 参考訳(メタデータ) (2024-09-25T17:59:32Z) - QMGeo: Differentially Private Federated Learning via Stochastic Quantization with Mixed Truncated Geometric Distribution [1.565361244756411]
Federated Learning(FL)は、複数のユーザがグローバル機械学習(ML)モデルを共同でトレーニングできるフレームワークである。
このような分散フレームワークの重要な動機の1つは、ユーザにプライバシ保証を提供することである。
本稿では,DPを提供するのに必要なランダム性を導入するために,混合幾何分布を用いた新しい量子化法を提案する。
論文 参考訳(メタデータ) (2023-12-10T04:44:53Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
我々は、最悪の近傍データセット上でのモデル分布間のKLばらつきのプライバシー境界を証明した。
このKLプライバシー境界は、トレーニング中にモデルパラメータに対して期待される2乗勾配ノルムによって決定される。
論文 参考訳(メタデータ) (2023-10-31T16:13:22Z) - Privacy-preserving design of graph neural networks with applications to
vertical federated learning [56.74455367682945]
VESPERと呼ばれるエンドツーエンドのグラフ表現学習フレームワークを提案する。
VESPERは、適切なプライバシー予算の下でスパースグラフと密度グラフの両方で高性能なGNNモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2023-10-31T15:34:59Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Privacy-Preserved Neural Graph Similarity Learning [99.78599103903777]
本稿では,グラフ類似性学習のためのプライバシ保存型ニューラルグラフマッチングネットワークモデルPPGMを提案する。
再構成攻撃を防ぐため、提案モデルではデバイス間でノードレベルの表現を通信しない。
グラフプロパティに対する攻撃を軽減するため、両方のベクトルの情報を含む難読化機能は通信される。
論文 参考訳(メタデータ) (2022-10-21T04:38:25Z) - Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation [25.95411320126426]
ソーシャルネットワークは、ディープラーニングの技術進歩を伴う異種グラフニューラルネットワーク(HGNN)であると考えられている。
本稿では,HeteDPと呼ばれる差分プライバシー機構に基づく,新しい異種グラフニューラルネットワークのプライバシ保存手法を提案する。
論文 参考訳(メタデータ) (2022-10-02T14:41:02Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - Differentially Private Graph Classification with GNNs [5.830410490229634]
グラフネットワーク(GNN)は多くの機械学習アプリケーションの最先端モデルとして確立されている。
グラフにおける機械学習の重要な応用の1つであるグラフレベル分類の差分プライバシーを導入する。
各種の合成および公開データセットについて結果を示し、異なるGNNアーキテクチャの影響を評価する。
論文 参考訳(メタデータ) (2022-02-05T15:16:40Z) - Gromov-Wasserstein Discrepancy with Local Differential Privacy for
Distributed Structural Graphs [7.4398547397969494]
本稿では,グラフニューラルネットワークから学習したノード埋め込みのGW差分を分析するためのプライバシー保護フレームワークを提案する。
我々の実験は,$varilon$-LDPアルゴリズムによって保証される強力なプライバシー保護により,提案フレームワークがグラフ学習におけるプライバシを保存するだけでなく,GW距離下でのノイズ構造指標も提示することを示した。
論文 参考訳(メタデータ) (2022-02-01T23:32:33Z) - Network Generation with Differential Privacy [4.297070083645049]
我々は、プライベート情報を含む実世界のグラフのプライベートな合成版を生成する問題について考察する。
本稿では,エッジ差分プライバシーを維持しつつ,実世界のネットワーク特性を再現できる生成モデルを提案する。
論文 参考訳(メタデータ) (2021-11-17T13:07:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。