論文の概要: Differential Privacy Regularization: Protecting Training Data Through Loss Function Regularization
- arxiv url: http://arxiv.org/abs/2409.17144v1
- Date: Wed, 25 Sep 2024 17:59:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 02:33:29.584499
- Title: Differential Privacy Regularization: Protecting Training Data Through Loss Function Regularization
- Title(参考訳): 差分プライバシー規則化:損失関数規則化によるトレーニングデータの保護
- Authors: Francisco Aguilera-Martínez, Fernando Berzal,
- Abstract要約: ニューラルネットワークに基づく機械学習モデルのトレーニングには、機密情報を含む大きなデータセットが必要である。
差分的にプライベートなSGD [DP-SGD] は、新しいモデルをトレーニングするために標準勾配降下アルゴリズム(SGD)を変更する必要がある。
より効率的な方法で同じ目標を達成するための新しい正規化戦略が提案されている。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training machine learning models based on neural networks requires large datasets, which may contain sensitive information. The models, however, should not expose private information from these datasets. Differentially private SGD [DP-SGD] requires the modification of the standard stochastic gradient descent [SGD] algorithm for training new models. In this short paper, a novel regularization strategy is proposed to achieve the same goal in a more efficient manner.
- Abstract(参考訳): ニューラルネットワークに基づく機械学習モデルのトレーニングには、機密情報を含む大きなデータセットが必要である。
しかし、これらのモデルはこれらのデータセットからプライベート情報を公開してはならない。
差分的にプライベートなSGD[DP-SGD]は、新しいモデルをトレーニングするために標準確率勾配勾配(SGD)アルゴリズムを変更する必要がある。
本稿では、より効率的な方法で同じ目標を達成するために、新しい正規化戦略を提案する。
関連論文リスト
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapleyは、機械学習コンテキストにおけるデータのコントリビューションに寄与するための、原則化されたフレームワークを提供する。
既存のアプローチでは、計算集約的な異なるデータサブセット上の再学習モデルが必要である。
本稿では、対象とするデータモデルに対するスケーラブルなデータ属性を提供することにより、これらの制限に対処するIn-Run Data Shapleyを紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:09:24Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
マシン・アンラーニング(英: Machine Unlearning)とは、特定のデータセットやクラスに指定された情報を事前訓練されたモデルから選択的に破棄するプロセスである。
本研究では,事前学習した分類ネットワークから,特定の種類のデータに関連付けられた情報の目的的除去に適した手法を提案する。
本手法は,従来の最先端の未学習手法を超越し,優れた有効性を示す。
論文 参考訳(メタデータ) (2024-03-24T17:33:22Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Sparsity-Preserving Differentially Private Training of Large Embedding
Models [67.29926605156788]
DP-SGDは、差分プライバシーと勾配降下を組み合わせたトレーニングアルゴリズムである。
DP-SGDをネーティブに埋め込みモデルに適用すると、勾配の間隔が破壊され、トレーニング効率が低下する。
我々は,大規模埋め込みモデルのプライベートトレーニングにおいて,勾配間隔を保ったDP-FESTとDP-AdaFESTの2つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-14T17:59:51Z) - Local Differential Privacy in Graph Neural Networks: a Reconstruction Approach [17.000441871334683]
ユーザレベルでノードのプライバシを提供するための学習フレームワークを提案する。
我々は、分散化された微分プライバシーの概念、すなわちローカル微分プライバシに焦点を当てる。
摂動データから特徴やラベルを近似する再構成手法を開発した。
論文 参考訳(メタデータ) (2023-09-15T17:35:51Z) - Equivariant Differentially Private Deep Learning: Why DP-SGD Needs
Sparser Models [7.49320945341034]
小型で効率的なアーキテクチャ設計は、計算要求がかなり少ない最先端のモデルよりも優れていることを示す。
私たちの結果は、パラメータを最適に活用する効率的なモデルアーキテクチャへの一歩です。
論文 参考訳(メタデータ) (2023-01-30T17:43:47Z) - Post-Hoc Domain Adaptation via Guided Data Homogenization [0.0]
ガイドデータ均質化によるデータ分布の変化への対応を提案する。
このアプローチは、ディープラーニングモデルに含まれるトレーニングデータに関する情報を利用して、ドメイン転送機能を学ぶ。
CIFAR-10およびMNISTデータセットの実験を通じて、データ均質化の可能性を示す。
論文 参考訳(メタデータ) (2021-04-08T09:18:48Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。