Emerging Approaches for THz Array Imaging: A Tutorial Review and
Software Tool
- URL: http://arxiv.org/abs/2309.08844v1
- Date: Sat, 16 Sep 2023 02:54:02 GMT
- Title: Emerging Approaches for THz Array Imaging: A Tutorial Review and
Software Tool
- Authors: Josiah W. Smith, Murat Torlak
- Abstract summary: THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions.
This article provides a tutorial review of systems and algorithms for THz SAR in the near-field.
We focus on object detection for security applications and SAR image super-resolution.
- Score: 2.5382095320488673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accelerated by the increasing attention drawn by 5G, 6G, and Internet of
Things applications, communication and sensing technologies have rapidly
evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years.
Enabled by significant advancements in electromagnetic (EM) hardware, mmWave
and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz,
respectively, can be employed for a host of applications. The main feature of
THz systems is high-bandwidth transmission, enabling ultra-high-resolution
imaging and high-throughput communications; however, challenges in both the
hardware and algorithmic arenas remain for the ubiquitous adoption of THz
technology. Spectra comprising mmWave and THz frequencies are well-suited for
synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide
spectrum of tasks like material characterization and nondestructive testing
(NDT). This article provides a tutorial review of systems and algorithms for
THz SAR in the near-field with an emphasis on emerging algorithms that combine
signal processing and machine learning techniques. As part of this study, an
overview of classical and data-driven THz SAR algorithms is provided, focusing
on object detection for security applications and SAR image super-resolution.
We also discuss relevant issues, challenges, and future research directions for
emerging algorithms and THz SAR, including standardization of system and
algorithm benchmarking, adoption of state-of-the-art deep learning techniques,
signal processing-optimized machine learning, and hybrid data-driven signal
processing algorithms...
Related papers
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
This paper addresses the critical problem of interference rejection in radio-frequency (RF) signals using a novel, data-driven approach.
First, we present an insightful signal model that serves as a foundation for developing and analyzing interference rejection algorithms.
Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF signals along with code templates.
Third, we propose novel AI-based rejection algorithms, specifically architectures like UNet and WaveNet, and evaluate their performance across eight different signal mixture types.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging
Systems [0.0]
This dissertation introduces novel hybrid-learning algorithms for improved mmWave imaging systems.
Various problem spaces are explored, including static and dynamic gesture classification.
High-resolution near-field mmWave imaging using forward synthetic aperture radar (SAR); SAR under irregular scanning geometries.
arXiv Detail & Related papers (2023-06-27T09:51:20Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
This paper presents an approach for tackling radar signal classification and characterisation as a multi-task learning (MTL) problem.
We propose the IQ Signal Transformer (IQST) among several reference architectures that allow for simultaneous optimisation of multiple regression and classification tasks.
We demonstrate the performance of our proposed MTL model on a synthetic radar dataset, while also providing a first-of-its-kind benchmark for radar signal characterisation.
arXiv Detail & Related papers (2023-06-19T12:01:28Z) - Efficient CNN-based Super Resolution Algorithms for mmWave Mobile Radar
Imaging [2.3623206450285457]
We introduce an innovative super resolution approach to emerging modes of near-field synthetic aperture radar (SAR) imaging.
Recent research extends convolutional neural network (CNN) architectures to achieve super resolution on images generated from radar signaling.
We propose a novel CNN architecture to achieve SAR image super-resolution for mobile applications by employing state-of-the-art SAR processing and deep learning techniques.
arXiv Detail & Related papers (2023-05-03T12:54:28Z) - Efficient 3-D Near-Field MIMO-SAR Imaging for Irregular Scanning
Geometries [0.0]
We introduce a novel algorithm for efficient near-field synthetic aperture radar (SAR) imaging for irregular scanning geometries.
We propose a framework to mathematically decompose arbitrary and irregular sampling geometries and a joint solution to multistatic array imaging artifacts.
arXiv Detail & Related papers (2023-05-03T12:07:21Z) - DensePose From WiFi [86.61881052177228]
We develop a deep neural network that maps the phase and amplitude of WiFi signals to UV coordinates within 24 human regions.
Our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches.
arXiv Detail & Related papers (2022-12-31T16:48:43Z) - IoV Scenario: Implementation of a Bandwidth Aware Algorithm in Wireless
Network Communication Mode [49.734868032441625]
This paper proposes a bandwidth aware multi domain virtual network embedding algorithm (BA-VNE)
The algorithm is mainly aimed at the problem that users need a lot of bandwidth in wireless communication mode.
In order to improve the performance of the algorithm, we introduce particle swarm optimization (PSO) algorithm.
arXiv Detail & Related papers (2022-02-03T03:34:06Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity.
One of the main challenges comes from the real-time implementation of these algorithms.
This paper explores the acceleration of APSM-based algorithms through massive parallelization.
arXiv Detail & Related papers (2022-01-13T15:20:45Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
Terahertz (THz) signal generation and radiation methods are shaping the future of wireless systems.
THz-specific signal processing techniques should complement this re-surged interest in THz sensing for efficient utilization of the THz band.
We present an overview of these techniques, with an emphasis on signal pre-processing.
We also address the effectiveness of deep learning techniques by exploring their promising sensing capabilities at the THz band.
arXiv Detail & Related papers (2021-04-09T01:38:34Z) - Real-Time Radio Technology and Modulation Classification via an LSTM
Auto-Encoder [29.590446724625693]
We present a learning framework based on an LSTM denoising auto-encoder designed to automatically extract stable and robust features from noisy radio signals.
Results on realistic synthetic as well as over-the-air radio data demonstrate that the proposed framework reliably and efficiently classifies received radio signals.
arXiv Detail & Related papers (2020-11-16T21:41:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.