Two-mode correlated multiphoton bundle emission
- URL: http://arxiv.org/abs/2309.08858v3
- Date: Thu, 26 Oct 2023 11:18:23 GMT
- Title: Two-mode correlated multiphoton bundle emission
- Authors: Yi Wang, Fen Zou, Jie-Qiao Liao
- Abstract summary: Two-mode correlated multiphoton bundle emission in a nondegenerate multiphoton Jaynes-Cummings model is studied.
Results show that there is an antibunching effect between the strongly-correlated photon bundles, so that the system behaves as an antibunched ($n+m$)-photon source.
- Score: 3.3752225883519404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The preparation of correlated multiphoton sources is an important research
topic in quantum optics and quantum information science. Here, two-mode
correlated multiphoton bundle emission in a nondegenerate multiphoton
Jaynes-Cummings model, which is comprised of a two-level system coupled with
two cavity modes is studied. The two-level system is driven by a near-resonant
strong laser such that the Mollow regime dominates the physical processes in
this system. Under certain resonance conditions, a perfect super-Rabi
oscillation between the zero-photon state $|0\rangle_{a}|0\rangle_{b}$ and the
($n+m$)-photon state $|n\rangle_{a}|m\rangle_{b}$ of the two cavity modes can
take place. Induced by the photon decay, the two-mode correlated multiphoton
bundle emission occurs in this system. More importantly, the results show that
there is an antibunching effect between the strongly-correlated photon bundles,
so that the system behaves as an antibunched ($n+m$)-photon source. The work
opens up a route towards achieving two-mode correlated multiphoton source
device, which has potential applications in modern quantum technology.
Related papers
- Tunable multiphoton bundles emission in a Kerr-type two-photon Jaynes-Cummings model [3.023091115036759]
We present a study on manipulation and enhancement of multiphoton bundles emission under a moderate atom-cavity coupling.
We show that the vacuum-Rabi splittings for the $n$th dressed states can be significantly enhanced by Kerr interaction.
arXiv Detail & Related papers (2024-09-03T09:28:51Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Dynamical $N$-photon bundle emission [6.259066812918972]
We propose a concept of dynamical emission of $N$ strongly-correlated photons.
This is realized in a circuit quantum electrodynamical system driven by two Gaussian-pulse sequences.
arXiv Detail & Related papers (2023-04-22T03:00:26Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Multiple-photon bundle emission in the $n$-photon Jaynes-Cummings model [3.307097167756987]
We study the multiple-photon bundle emission in the $n$-photon Jaynes-Cummings model.
Our work paves the way towards the study of multiple-photon quantum coherent devices.
arXiv Detail & Related papers (2022-04-21T06:09:16Z) - Almost indistinguishable single photons via multiplexing cascaded
biphotons with cavity modulation and phase compensation [0.0]
We study the frequency entanglement of a biphoton generated from alkali metal atomic ensembles.
The purity of single photon reaches up to $0.999$ and the entanglement entropy $S$ of the biphoton reduces to $0.006$.
An extremely low frequency entanglement implies an almost indistinguishable single photon source.
arXiv Detail & Related papers (2022-01-26T15:34:26Z) - Moir\'e-induced optical non-linearities: Single and multi-photon
resonances [0.0]
Moir'e excitons promise a new platform with which to generate and manipulate hybrid quantum phases of light and matter.
We show that the steady states exhibit a rich phase diagram with pronounced bi-stabilities governed by multi-photon resonances.
In the presence of an incoherent pumping of excitons we find that the system can realise one- and multi-photon lasers.
arXiv Detail & Related papers (2021-08-13T11:47:44Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.