The Impact of Recommendation Systems on Opinion Dynamics: Microscopic
versus Macroscopic Effects
- URL: http://arxiv.org/abs/2309.08967v2
- Date: Thu, 7 Dec 2023 18:48:41 GMT
- Title: The Impact of Recommendation Systems on Opinion Dynamics: Microscopic
versus Macroscopic Effects
- Authors: Nicolas Lanzetti, Florian D\"orfler, Nicol\`o Pagan
- Abstract summary: We study the impact of recommendation systems on users, both from a microscopic (i.e., at the level of individual users) and a macroscopic perspective.
Our analysis reveals that shifts in the opinions of individual users do not always align with shifts in the opinion distribution of the population.
- Score: 1.4180331276028664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommendation systems are widely used in web services, such as social
networks and e-commerce platforms, to serve personalized content to the users
and, thus, enhance their experience. While personalization assists users in
navigating through the available options, there have been growing concerns
regarding its repercussions on the users and their opinions. Examples of
negative impacts include the emergence of filter bubbles and the amplification
of users' confirmation bias, which can cause opinion polarization and
radicalization. In this paper, we study the impact of recommendation systems on
users, both from a microscopic (i.e., at the level of individual users) and a
macroscopic (i.e., at the level of a homogenous population) perspective.
Specifically, we build on recent work on the interactions between opinion
dynamics and recommendation systems to propose a model for this closed loop,
which we then study both analytically and numerically. Among others, our
analysis reveals that shifts in the opinions of individual users do not always
align with shifts in the opinion distribution of the population. In particular,
even in settings where the opinion distribution appears unaltered (e.g.,
measured via surveys across the population), the opinion of individual users
might be significantly distorted by the recommendation system.
Related papers
- Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs [57.16442740983528]
In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback.
The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied.
We focus on how the evaluation of task-oriented dialogue systems ( TDSs) is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated.
arXiv Detail & Related papers (2024-04-19T16:45:50Z) - Debiasing Recommendation by Learning Identifiable Latent Confounders [49.16119112336605]
Confounding bias arises due to the presence of unmeasured variables that can affect both a user's exposure and feedback.
Existing methods either (1) make untenable assumptions about these unmeasured variables or (2) directly infer latent confounders from users' exposure.
We propose a novel method, i.e., identifiable deconfounder (iDCF), which leverages a set of proxy variables to resolve the aforementioned non-identification issue.
arXiv Detail & Related papers (2023-02-10T05:10:26Z) - Fair Effect Attribution in Parallel Online Experiments [57.13281584606437]
A/B tests serve the purpose of reliably identifying the effect of changes introduced in online services.
It is common for online platforms to run a large number of simultaneous experiments by splitting incoming user traffic randomly.
Despite a perfect randomization between different groups, simultaneous experiments can interact with each other and create a negative impact on average population outcomes.
arXiv Detail & Related papers (2022-10-15T17:15:51Z) - PARSRec: Explainable Personalized Attention-fused Recurrent Sequential
Recommendation Using Session Partial Actions [0.5801044612920815]
We propose an architecture that relies on common patterns as well as individual behaviors to tailor its recommendations for each person.
Our empirical results on Nielsen Consumer Panel dataset indicate that the proposed approach achieves up to 27.9% performance improvement.
arXiv Detail & Related papers (2022-09-16T12:07:43Z) - Joint Multisided Exposure Fairness for Recommendation [76.75990595228666]
This paper formalizes a family of exposure fairness metrics that model the problem jointly from the perspective of both the consumers and producers.
Specifically, we consider group attributes for both types of stakeholders to identify and mitigate fairness concerns that go beyond individual users and items towards more systemic biases in recommendation.
arXiv Detail & Related papers (2022-04-29T19:13:23Z) - Deep Causal Reasoning for Recommendations [47.83224399498504]
A new trend in recommender system research is to negate the influence of confounders from a causal perspective.
We model the recommendation as a multi-cause multi-outcome (MCMO) inference problem.
We show that MCMO modeling may lead to high variance due to scarce observations associated with the high-dimensional causal space.
arXiv Detail & Related papers (2022-01-06T15:00:01Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - Measuring Recommender System Effects with Simulated Users [19.09065424910035]
Popularity bias and filter bubbles are two of the most well-studied recommender system biases.
We offer a simulation framework for measuring the impact of a recommender system under different types of user behavior.
arXiv Detail & Related papers (2021-01-12T14:51:11Z) - A Robust Reputation-based Group Ranking System and its Resistance to
Bribery [8.300507994596416]
We propose a new reputation-based ranking system, utilizing multipartite ratingworks.
We study its resistance to bribery and how to design optimal bribing strategies.
arXiv Detail & Related papers (2020-04-13T22:28:29Z) - Modeling and Counteracting Exposure Bias in Recommender Systems [0.0]
We study the bias inherent in widely used recommendation strategies such as matrix factorization.
We propose new debiasing strategies for recommender systems.
Our results show that recommender systems are biased and depend on the prior exposure of the user.
arXiv Detail & Related papers (2020-01-01T00:12:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.