Efficiency of Feynman's quantum computer
- URL: http://arxiv.org/abs/2309.09331v2
- Date: Wed, 22 Jan 2025 16:52:23 GMT
- Title: Efficiency of Feynman's quantum computer
- Authors: Ralph Jason Costales, Alex Gunning, Tony Dorlas,
- Abstract summary: Feynman's circuit-to-Hamiltonian construction enables the mapping of a quantum circuit to a time-independent Hamiltonian.
We explore the efficiency, or run-time, of a quantum computer that directly implements the clock system.
- Score: 0.0
- License:
- Abstract: Feynman's circuit-to-Hamiltonian construction enables the mapping of a quantum circuit to a time-independent Hamiltonian. This model introduces a Hilbert space made from an ancillary clock register tracking the progress of the computation. In this paper, we explore the efficiency, or run-time, of a quantum computer that directly implements the clock system. This relates to the model's probability of computation completion which we investigate at an established optimal time for an arbitrary number of gates $k$. The relationship between the run-time of the model and the number of gates is obtained both numerically and analytically to be $O(k^{5/3})$. In principle, this is significantly more efficient than the well investigated Feynman-Kitaev model of adiabatic quantum computation with a run-time of $O(k^4)$. We address the challenge which stems from the small window that exists to capture the optimal stopping time, after which there are rapid oscillations of decreasing probability amplitude. We establish a relationship for the time difference between the first and second maximum which scales as O($k^{1/3}$).
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
We show how to lift classical slow mixing results in the presence of a transverse field using Poisson Feynman-Kac techniques.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Efficient Quantum Simulation Algorithms in the Path Integral Formulation [0.5729426778193399]
We provide two novel quantum algorithms based on Hamiltonian versions of the path integral formulation and another for Lagrangians of the form $fracm2dotx2 - V(x)$.
We show that our Lagrangian simulation algorithm requires a number of queries to an oracle that computes the discrete Lagrangian that scales for a system with $eta$ particles in $D+1$ dimensions, in the continuum limit, as $widetildeO(eta D t2/epsilon)$ if $V(x)$ is bounded
arXiv Detail & Related papers (2024-05-11T15:48:04Z) - Sachdev-Ye-Kitaev model on a noisy quantum computer [1.0377683220196874]
We study the SYK model -- an important toy model for quantum gravity on IBM's superconducting qubit quantum computers.
We compute return probability after time $t$ and out-of-time order correlators (OTOC) which is a standard observable of quantifying the chaotic nature of quantum systems.
arXiv Detail & Related papers (2023-11-29T19:00:00Z) - On the complexity of implementing Trotter steps [2.1369834525800138]
We develop methods to perform faster Trotter steps with complexity sublinear in number of terms.
We also realize faster Trotter steps when certain blocks of Hamiltonian coefficients have low rank.
Our result suggests the use of Hamiltonian structural properties as both necessary and sufficient to implement Trotter synthesis steps with lower gate complexity.
arXiv Detail & Related papers (2022-11-16T19:00:01Z) - Beyond Heisenberg Limit Quantum Metrology through Quantum Signal
Processing [0.0]
We propose a quantum-signal-processing framework to overcome noise-induced limitations in quantum metrology.
Our algorithm achieves an accuracy of $10-4$ radians in standard deviation for learning $theta$ in superconductingqubit experiments.
Our work is the first quantum-signal-processing algorithm that demonstrates practical application in laboratory quantum computers.
arXiv Detail & Related papers (2022-09-22T17:47:21Z) - Unimon qubit [42.83899285555746]
Superconducting qubits are one of the most promising candidates to implement quantum computers.
Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator.
arXiv Detail & Related papers (2022-03-11T12:57:43Z) - Demonstration of the Rodeo Algorithm on a Quantum Computer [0.0]
Rodeo algorithm is an efficient algorithm for eigenstate preparation and eigenvalue estimation for any observable on a quantum computer.
It is exponentially faster than well-known algorithms such as phase estimation and adiabatic evolution for eigenstate preparation.
It has yet to be implemented on an actual quantum device.
arXiv Detail & Related papers (2021-10-14T22:16:47Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.