論文の概要: Federated Learning in Temporal Heterogeneity
- arxiv url: http://arxiv.org/abs/2309.09381v1
- Date: Sun, 17 Sep 2023 21:20:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 15:51:45.835796
- Title: Federated Learning in Temporal Heterogeneity
- Title(参考訳): 時間的不均質性における連合学習
- Authors: Junghwan Lee
- Abstract要約: 固定長列をトレーニングしたtextttFedAvg で得られた大域的モデルは、可変長列よりも高速に収束することを示した。
- 参考スコア(独自算出の注目度): 0.6091702876917281
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we explored federated learning in temporal heterogeneity across
clients. We observed that global model obtained by \texttt{FedAvg} trained with
fixed-length sequences shows faster convergence than varying-length sequences.
We proposed methods to mitigate temporal heterogeneity for efficient federated
learning based on the empirical observation.
- Abstract(参考訳): 本研究では,クライアント間の時間的不均質性における連合学習について検討した。
固定長列で訓練した大域的モデルでは, 可変長列よりも高速に収束することが観察された。
本研究では,経験的観察に基づく効率的なフェデレーション学習のための時間的不均一性を軽減する手法を提案する。
関連論文リスト
- Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
本稿では,フェデレート学習におけるデータ不均一性の課題に対処する,新しいコントラスト学習フレームワークを提案する。
当社のフレームワークは,既存のフェデレート学習アプローチを,標準ベンチマークにおいて大きなマージンで上回ります。
論文 参考訳(メタデータ) (2024-01-10T04:55:24Z) - Neural Structure Learning with Stochastic Differential Equations [9.076396370870423]
本稿では,ニューラルディファレンシャル方程式と変分推論を組み合わせた新しい構造学習手法SCOTCHを提案する。
この連続的なアプローチは、任意の時点における観測からの学習と予測の両方を自然に処理することができる。
論文 参考訳(メタデータ) (2023-11-06T17:58:47Z) - Revisiting the Temporal Modeling in Spatio-Temporal Predictive Learning
under A Unified View [73.73667848619343]
UTEP(Unified S-Temporal Predictive Learning)は,マイクロテンポラリスケールとマクロテンポラリスケールを統合した再帰的および再帰的フリーな手法を再構築する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2023-10-09T16:17:42Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in
Disease Progression [82.85825388788567]
我々は、ラベル付き時系列データから予測時相パターンの表現型を発見するために、新しい時間的クラスタリング手法T-Phenotypeを開発した。
T-フェノタイプは, 評価ベースラインのすべてに対して, 最良の表現型発見性能を示す。
論文 参考訳(メタデータ) (2023-02-24T13:30:35Z) - Depersonalized Federated Learning: Tackling Statistical Heterogeneity by
Alternating Stochastic Gradient Descent [6.394263208820851]
フェデレート・ラーニング(FL)は、デバイスがデータ共有なしでインテリジェントな推論のために共通の機械学習(ML)モデルをトレーニングすることを可能にする。
様々な共役者によって保持される生データは、常に不特定に分散される。
本稿では,このプロセスのデスピードにより統計的に大幅に最適化できる新しいFLを提案する。
論文 参考訳(メタデータ) (2022-10-07T10:30:39Z) - Unsupervised Time-Series Representation Learning with Iterative Bilinear
Temporal-Spectral Fusion [6.154427471704388]
本稿では,双線形時間スペクトル融合(BTSF)という統合フレームワークを提案する。
具体的には、インスタンスレベルの拡張を時系列全体への単純なドロップアウトで利用し、長期的依存関係を最大限に捉えます。
時間-周波数ペアの親和性を明示的にエンコードするために、新しい反復性双線形時間-スペクトル融合を考案する。
論文 参考訳(メタデータ) (2022-02-08T14:04:08Z) - Joint Community Detection and Rotational Synchronization via
Semidefinite Programming [17.845257705485533]
ランダムに回転したオブジェクトを複数の下位カテゴリに分類する異種データが存在する場合、それらをクラスタに分類し、ペア関係に基づいて同期させることは困難である。
本稿では, 半定値緩和を連続的に提案し, お祝いブロックモデルをこの新しい設定に拡張する際の正確な回復を実証する。
数値実験により,提案アルゴリズムの有効性を実証し,正確な回復のための急激な相転移を示す理論的結果を確認する。
論文 参考訳(メタデータ) (2021-05-13T01:40:20Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
フェデレーション学習は、データをローカルに保持しながら、クライアントのネットワークに分散したデータサンプルから学習する。
本稿では,学習手順を高速化するために,クライアントデータの統計的特徴を取り入れてクライアントを適応的に選択する,ストラグラー・レジリエントなフェデレーション学習手法を提案する。
論文 参考訳(メタデータ) (2020-12-28T19:21:14Z) - Network Classifiers Based on Social Learning [71.86764107527812]
空間と時間に対して独立に訓練された分類器を結合する新しい手法を提案する。
提案したアーキテクチャは、ラベルのないデータで時間とともに予測性能を改善することができる。
この戦略は高い確率で一貫した学習をもたらすことが示され、未訓練の分類器に対して頑健な構造が得られる。
論文 参考訳(メタデータ) (2020-10-23T11:18:20Z) - FedCluster: Boosting the Convergence of Federated Learning via
Cluster-Cycling [25.53644376308003]
我々はFedClusterを開発し、効率を向上した新しい学習フレームワークを開発し、その理論的収束特性について検討する。
デバイスレベルの多様なアプリケーションにおいて,ディープラーニングデバイス上で実験を行う。
論文 参考訳(メタデータ) (2020-09-22T18:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。