論文の概要: Neural Structure Learning with Stochastic Differential Equations
- arxiv url: http://arxiv.org/abs/2311.03309v2
- Date: Sun, 5 May 2024 21:38:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 00:25:31.427421
- Title: Neural Structure Learning with Stochastic Differential Equations
- Title(参考訳): 確率微分方程式を用いたニューラル構造学習
- Authors: Benjie Wang, Joel Jennings, Wenbo Gong,
- Abstract要約: 本稿では,ニューラルディファレンシャル方程式と変分推論を組み合わせた新しい構造学習手法SCOTCHを提案する。
この連続的なアプローチは、任意の時点における観測からの学習と予測の両方を自然に処理することができる。
- 参考スコア(独自算出の注目度): 9.076396370870423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discovering the underlying relationships among variables from temporal observations has been a longstanding challenge in numerous scientific disciplines, including biology, finance, and climate science. The dynamics of such systems are often best described using continuous-time stochastic processes. Unfortunately, most existing structure learning approaches assume that the underlying process evolves in discrete-time and/or observations occur at regular time intervals. These mismatched assumptions can often lead to incorrect learned structures and models. In this work, we introduce a novel structure learning method, SCOTCH, which combines neural stochastic differential equations (SDE) with variational inference to infer a posterior distribution over possible structures. This continuous-time approach can naturally handle both learning from and predicting observations at arbitrary time points. Theoretically, we establish sufficient conditions for an SDE and SCOTCH to be structurally identifiable, and prove its consistency under infinite data limits. Empirically, we demonstrate that our approach leads to improved structure learning performance on both synthetic and real-world datasets compared to relevant baselines under regular and irregular sampling intervals.
- Abstract(参考訳): 時間観測から変数間の基礎となる関係を明らかにすることは、生物学、金融学、気候科学を含む多くの科学分野において長年の課題であった。
このような系の力学は、しばしば連続時間確率過程を用いて記述される。
残念なことに、ほとんどの既存の構造学習アプローチは、基礎となるプロセスは離散時間で進化し、そして/または観測は定期的な時間間隔で起こると仮定している。
これらのミスマッチした仮定は、しばしば誤った学習された構造やモデルにつながる。
本研究では,ニューラル確率微分方程式 (SDE) と変分推論を組み合わせた構造学習手法 SCOTCH を提案する。
この連続的なアプローチは、任意の時点における観測からの学習と予測の両方を自然に処理することができる。
理論的には、SDEとSCOTCHが構造的に識別できる十分な条件を確立し、その一貫性を無限のデータ制限下で証明する。
実験により,本手法は,規則的,不規則なサンプリング間隔において,関連するベースラインと比較して,合成データセットと実世界のデータセットの両方における構造学習性能を向上させることを実証した。
関連論文リスト
- OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Latent Traversals in Generative Models as Potential Flows [113.4232528843775]
我々は,学習された動的ポテンシャルランドスケープを持つ潜在構造をモデル化することを提案する。
物理、最適輸送、神経科学にインスパイアされたこれらの潜在的景観は、物理的に現実的な偏微分方程式として学習される。
本手法は,最先端のベースラインよりも定性的かつ定量的に歪んだ軌跡を実現する。
論文 参考訳(メタデータ) (2023-04-25T15:53:45Z) - Neural Continuous-Discrete State Space Models for Irregularly-Sampled
Time Series [18.885471782270375]
NCDSSMは補助変数を用いて力学からの認識をアンタングルし、補助変数のみに償却推論を必要とする。
本稿では、潜在力学の3つのフレキシブルパラメータ化と、推論中の動的状態の辺りを生かした効率的な学習目標を提案する。
複数のベンチマークデータセットの実証結果は、既存のモデルよりもNCDSSMの計算性能と予測性能が改善されたことを示している。
論文 参考訳(メタデータ) (2023-01-26T18:45:04Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - STRODE: Stochastic Boundary Ordinary Differential Equation [30.237665903943963]
時系列モデリングのほとんどのアルゴリズムは、視覚や音声の入力から直接ランダムなイベントタイミングのダイナミクスを学習できない。
本稿では、学習中にタイミングアノテーションを必要とせず、時系列データのタイミングとダイナミクスの両方を学習する確率的常微分方程式(ODE)を提案する。
その結果,本手法は時系列データのイベントタイミング推定に有効であることがわかった。
論文 参考訳(メタデータ) (2021-07-17T16:25:46Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
コントラスト学習(Contrastive Learning)は、ラベルのないデータから構築された分類タスクを解決するためにモデルを訓練する自己指導型の手法のファミリーである。
拡散の場合,小~中距離間隔の遷移カーネルを適切に構築したコントラスト学習タスクを用いて推定できることが示される。
論文 参考訳(メタデータ) (2021-03-03T23:06:47Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z) - Structure learning for CTBN's via penalized maximum likelihood methods [2.997206383342421]
我々は,より困難な課題である構造学習問題について検討し,その課題に関する既存の研究は限られている。
我々のアルゴリズムは、穏やかな規則性条件下で、高い確率でグラフの依存構造を認識することを証明している。
論文 参考訳(メタデータ) (2020-06-13T14:28:19Z) - Learning Continuous-Time Dynamics by Stochastic Differential Networks [32.63114111531396]
変動微分ネットワーク(VSDN)という,フレキシブルな連続時間リカレントニューラルネットワークを提案する。
VSDNは神経微分方程式(SDE)による散発時間系列の複雑なダイナミクスを埋め込む
VSDNは最先端の継続的ディープラーニングモデルより優れており、散発時系列の予測やタスクにおいて優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-06-11T01:40:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。