論文の概要: LSCD: Lomb-Scargle Conditioned Diffusion for Time series Imputation
- arxiv url: http://arxiv.org/abs/2506.17039v1
- Date: Fri, 20 Jun 2025 14:48:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.491004
- Title: LSCD: Lomb-Scargle Conditioned Diffusion for Time series Imputation
- Title(参考訳): LSCD: 時系列インプットのためのLmb-Scargle条件付き拡散
- Authors: Elizabeth Fons, Alejandro Sztrajman, Yousef El-Laham, Luciana Ferrer, Svitlana Vyetrenko, Manuela Veloso,
- Abstract要約: 欠落または不規則なサンプルデータを持つ時系列は、機械学習において永続的な課題である。
我々は,不規則サンプルデータのパワースペクトルの信頼性の高い計算を可能にする,異なるLombiable-Scargle層を導入する。
- 参考スコア(独自算出の注目度): 55.800319453296886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series with missing or irregularly sampled data are a persistent challenge in machine learning. Many methods operate on the frequency-domain, relying on the Fast Fourier Transform (FFT) which assumes uniform sampling, therefore requiring prior interpolation that can distort the spectra. To address this limitation, we introduce a differentiable Lomb--Scargle layer that enables a reliable computation of the power spectrum of irregularly sampled data. We integrate this layer into a novel score-based diffusion model (LSCD) for time series imputation conditioned on the entire signal spectrum. Experiments on synthetic and real-world benchmarks demonstrate that our method recovers missing data more accurately than purely time-domain baselines, while simultaneously producing consistent frequency estimates. Crucially, our method can be easily integrated into learning frameworks, enabling broader adoption of spectral guidance in machine learning approaches involving incomplete or irregular data.
- Abstract(参考訳): 欠落または不規則なサンプルデータを持つ時系列は、機械学習において永続的な課題である。
多くのメソッドは周波数領域で動作し、一様サンプリングを前提としたFFT(Fast Fourier Transform)に依存しているため、スペクトルを歪ませる事前補間を必要とする。
この制限に対処するために、不規則サンプルデータのパワースペクトルの信頼性の高い計算を可能にする、微分可能なLomb-Scargle層を導入する。
我々は、この層を信号スペクトル全体に条件付き時系列計算のための新しいスコアベース拡散モデル(LSCD)に統合する。
合成および実世界のベンチマーク実験により、本手法は純粋に時間領域ベースラインよりも正確に欠落したデータを復元し、同時に一貫した周波数推定を行うことを示した。
重要なことに,本手法は学習フレームワークに容易に組み込むことができ,不完全あるいは不規則なデータを含む機械学習アプローチにスペクトルガイダンスを広く適用することができる。
関連論文リスト
- MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
時系列予測は、周波数の異なる周期特性から導かれる。
マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-11T11:40:14Z) - F-SE-LSTM: A Time Series Anomaly Detection Method with Frequency Domain Information [10.113418621891281]
F-SE-LSTMと呼ばれる新しい時系列異常検出法を提案する。
この方法は、2つのスライディングウィンドウと高速フーリエ変換(FFT)を用いて周波数行列を構成する。
F-SE-LSTMは、通常の時間領域や周波数領域のデータよりも識別能力が高いことを示す。
論文 参考訳(メタデータ) (2024-12-03T14:36:24Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
この研究は、目に見えないディープフェイク画像を効果的に識別できるユニバーサルディープフェイク検出器を開発するという課題に対処する。
既存の周波数ベースのパラダイムは、偽造検出のためにGANパイプラインのアップサンプリング中に導入された周波数レベルのアーティファクトに依存している。
本稿では、周波数領域学習を中心にしたFreqNetと呼ばれる新しい周波数認識手法を導入し、ディープフェイク検出器の一般化性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-03-12T01:28:00Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
本研究では、周波数領域の構造を利用して、空間や時間における長距離相関を効率的に学習するために設計されたディープニューラルネットワークについて検討する。
この研究は、単一変換による周波数領域学習のための青写真を導入している。
論文 参考訳(メタデータ) (2022-11-26T01:56:05Z) - Imputing Missing Observations with Time Sliced Synthetic Minority
Oversampling Technique [0.3973560285628012]
本稿では,データセット内の各サンプルに対して均一な不規則な時系列を構成することを目的とした,単純かつ斬新な時系列計算手法を提案する。
我々は、観測時間の重複しないビン(「スライス」と呼ばれる)の中間点で定義される格子を固定し、各サンプルが所定の時間にすべての特徴に対して値を持つことを保証する。
これにより、完全に欠落した観察をインプットし、データ全体の時系列の均一な分類を可能にし、特別な場合には個々の欠落した特徴をインプットすることができる。
論文 参考訳(メタデータ) (2022-01-14T19:23:24Z) - On Sparse High-Dimensional Graphical Model Learning For Dependent Time Series [12.94486861344922]
本稿では,スパース,高次元定常時系列の条件独立グラフ(CIG)を推定する問題を考察する。
スパースグループラッソに基づく周波数領域の定式化について述べる。
また,ベイズ情報基準に基づくチューニングパラメータの選択についても実験的に検討した。
論文 参考訳(メタデータ) (2021-11-15T16:52:02Z) - Extraction of instantaneous frequencies and amplitudes in nonstationary
time-series data [2.36991223784587]
古典的アプローチの欠点の多くを回避する時間周波数解析のためのデータ駆動アプローチを提案する。
本手法は, カンチレバーを用いた静電力顕微鏡データを含む時系列データの多様性を示す。
論文 参考訳(メタデータ) (2021-04-03T02:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。