論文の概要: LLM4Jobs: Unsupervised occupation extraction and standardization
leveraging Large Language Models
- arxiv url: http://arxiv.org/abs/2309.09708v1
- Date: Mon, 18 Sep 2023 12:22:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 13:42:10.716278
- Title: LLM4Jobs: Unsupervised occupation extraction and standardization
leveraging Large Language Models
- Title(参考訳): LLM4ジョブ:大規模言語モデルを活用した教師なし職業抽出と標準化
- Authors: Nan Li, Bo Kang, Tijl De Bie
- Abstract要約: 本稿では,LLM4Jobsについて紹介する。LLM4Jobsは,大規模言語モデル(LLM)の職業的符号化能力を活用する,教師なしの方法論である。
合成および実世界のデータセット上で厳密な実験を行い、LLM4Jobsが教師なしの最先端ベンチマークを一貫して上回っていることを示す。
- 参考スコア(独自算出の注目度): 14.847441358093866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated occupation extraction and standardization from free-text job
postings and resumes are crucial for applications like job recommendation and
labor market policy formation. This paper introduces LLM4Jobs, a novel
unsupervised methodology that taps into the capabilities of large language
models (LLMs) for occupation coding. LLM4Jobs uniquely harnesses both the
natural language understanding and generation capacities of LLMs. Evaluated on
rigorous experimentation on synthetic and real-world datasets, we demonstrate
that LLM4Jobs consistently surpasses unsupervised state-of-the-art benchmarks,
demonstrating its versatility across diverse datasets and granularities. As a
side result of our work, we present both synthetic and real-world datasets,
which may be instrumental for subsequent research in this domain. Overall, this
investigation highlights the promise of contemporary LLMs for the intricate
task of occupation extraction and standardization, laying the foundation for a
robust and adaptable framework relevant to both research and industrial
contexts.
- Abstract(参考訳): 職業推薦や労働市場政策形成などのアプリケーションには、フリーテキストの求人や履歴書からの職業の自動抽出と標準化が不可欠である。
本稿では,LLM4Jobsについて紹介する。LLM4Jobsは,大規模言語モデル(LLM)の職業的符号化能力を活用する,教師なしの方法論である。
LLM4JobsはLLMの自然言語理解と生成能力の両方を活用する。
合成および実世界のデータセットに対する厳密な実験を評価した結果、LLM4Jobsは教師なしの最先端ベンチマークを一貫して上回り、多様なデータセットや粒度にまたがる汎用性を実証した。
我々の研究の副産物として、この領域におけるその後の研究に役立つかもしれない合成データセットと実世界のデータセットを提示する。
全体として、この調査は、占領の抽出と標準化の複雑な作業に対する現代のLLMの約束を強調しており、研究と産業の文脈の両方に関連する堅牢で適応可能な枠組みの基礎を築いた。
関連論文リスト
- Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
大規模言語モデル(LLM)は、言語理解および生成タスクにおいて顕著なパフォーマンスを達成した。
ビジネスプロセスにおけるLCMの有用性と準備性について概説する。
論文 参考訳(メタデータ) (2024-06-09T02:36:00Z) - LLMs with Industrial Lens: Deciphering the Challenges and Prospects -- A
Survey [8.149749907267054]
大規模言語モデル(LLM)は、多くの産業用途を駆動する秘密の要素となっている。
本稿では,産業環境におけるLCMの活用にともなう障害と機会を解明し,評価する。
論文 参考訳(メタデータ) (2024-02-22T13:52:02Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - A Survey on Large Language Models for Software Engineering [15.468484685849983]
大規模言語モデル(LLM)は、幅広いソフトウェア工学(SE)タスクを自動化するために使われる。
本稿では,LLMを基盤としたSEコミュニティにおける最先端の研究について概説する。
論文 参考訳(メタデータ) (2023-12-23T11:09:40Z) - Exploring the Potential of Large Language Models in Computational Argumentation [54.85665903448207]
大規模言語モデル (LLM) は、文脈を理解し、自然言語を生成するという印象的な能力を実証している。
この研究は、ChatGPT、Flanモデル、LLaMA2モデルなどのLLMをゼロショットと少数ショットの両方で評価することを目的としている。
論文 参考訳(メタデータ) (2023-11-15T15:12:15Z) - A Large Language Model Approach to Educational Survey Feedback Analysis [0.0]
本稿では,大規模言語モデル(LLM) GPT-4 と GPT-3.5 が教育フィードバック調査から洞察を得るのに役立つ可能性について検討する。
論文 参考訳(メタデータ) (2023-09-29T17:57:23Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z) - LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities [66.36633042421387]
知識グラフ(KG)の構築と推論のための大規模言語モデル(LLM)の評価。
我々は,LLMと外部ソースを用いたマルチエージェントベースのアプローチであるAutoKGを提案し,KGの構築と推論を行う。
論文 参考訳(メタデータ) (2023-05-22T15:56:44Z) - Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond [48.70557995528463]
このガイドは、研究者や実践者が大規模言語モデルを扱うための貴重な洞察とベストプラクティスを提供することを目的としている。
実世界のシナリオにおける LLM の実用的応用と限界を説明するために, 様々なユースケースと非利用事例を提示する。
論文 参考訳(メタデータ) (2023-04-26T17:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。