An Optimization Case Study for solving a Transport Robot Scheduling
Problem on Quantum-Hybrid and Quantum-Inspired Hardware
- URL: http://arxiv.org/abs/2309.09736v4
- Date: Tue, 24 Oct 2023 13:20:06 GMT
- Title: An Optimization Case Study for solving a Transport Robot Scheduling
Problem on Quantum-Hybrid and Quantum-Inspired Hardware
- Authors: Dominik Leib, Tobias Seidel, Sven J\"ager, Raoul Heese, Caitlin Isobel
Jones, Abhishek Awasthi, Astrid Niederle, Michael Bortz
- Abstract summary: We compare D-Waves' quantum-classical hybrid framework, Fujitsu's quantum-inspired digital annealer, and Gurobi's state-of-the-art classical solver in solving a transport robot scheduling problem.
We find promising results for the digital annealer and some opportunities for the hybrid quantum annealer in direct comparison with Gurobi.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a comprehensive case study comparing the performance of D-Waves'
quantum-classical hybrid framework, Fujitsu's quantum-inspired digital
annealer, and Gurobi's state-of-the-art classical solver in solving a transport
robot scheduling problem. This problem originates from an industrially relevant
real-world scenario. We provide three different models for our problem
following different design philosophies. In our benchmark, we focus on the
solution quality and end-to-end runtime of different model and solver
combinations. We find promising results for the digital annealer and some
opportunities for the hybrid quantum annealer in direct comparison with Gurobi.
Our study provides insights into the workflow for solving an
application-oriented optimization problem with different strategies, and can be
useful for evaluating the strengths and weaknesses of different approaches.
Related papers
- Real World Application of Quantum-Classical Optimization for Production Scheduling [0.4326762849037007]
This work is a benchmark study for quantum-classical computing method with a real-world optimization problem from industry.
The problem involves scheduling and balancing jobs on different machines, with a non-linear objective function.
The modeling for classical solvers has been done as a mixed-integer convex program, while for the quantum-classical solver we model the problem as a binary quadratic program.
arXiv Detail & Related papers (2024-08-03T02:58:01Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Multi-Objective Optimization and Network Routing with Near-Term Quantum
Computers [0.2150989251218736]
We develop a scheme with which near-term quantum computers can be applied to solve multi-objective optimization problems.
We focus on an implementation based on the quantum approximate optimization algorithm (QAOA)
arXiv Detail & Related papers (2023-08-16T09:22:01Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - Recommending Solution Paths for Solving Optimization Problems with
Quantum Computing [4.306566710489809]
We propose a framework designed to identify and recommend the best-suited solution paths.
State-of-the-art hybrid algorithms, encoding and decomposition techniques can be integrated in a modular manner.
We demonstrate and validate our approach on a selected set of options and illustrate its application on the capacitated vehicle routing problem.
arXiv Detail & Related papers (2022-12-21T15:55:43Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Optimization of Robot Trajectory Planning with Nature-Inspired and
Hybrid Quantum Algorithms [0.0]
We solve robot trajectory planning problems at industry-relevant scales.
Our end-to-end solution integrates highly versatile random-key algorithms with model stacking and ensemble techniques.
We show how the latter can be integrated into our larger pipeline, providing a quantum-ready hybrid solution to the problem.
arXiv Detail & Related papers (2022-06-08T02:38:32Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Analysis of Vehicle Routing Problem in Presence of Noisy Channels [0.0]
Vehicle routing problem (VRP) is an NP-hard optimization problem.
This work builds a basic VRP solution for 3 and 4 cities using variational quantum eigensolver on a variable ANSATZ.
arXiv Detail & Related papers (2021-12-28T10:20:42Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.