Privileged to Predicted: Towards Sensorimotor Reinforcement Learning for
Urban Driving
- URL: http://arxiv.org/abs/2309.09756v1
- Date: Mon, 18 Sep 2023 13:34:41 GMT
- Title: Privileged to Predicted: Towards Sensorimotor Reinforcement Learning for
Urban Driving
- Authors: Ege Onat \"Ozs\"uer, Bar{\i}\c{s} Akg\"un, Fatma G\"uney
- Abstract summary: Reinforcement Learning (RL) has the potential to surpass human performance in driving without needing any expert supervision.
We propose vision-based deep learning models to approximate the privileged representations from sensor data.
We shed light on the significance of the state representations in RL for autonomous driving and point to unresolved challenges for future research.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement Learning (RL) has the potential to surpass human performance in
driving without needing any expert supervision. Despite its promise, the
state-of-the-art in sensorimotor self-driving is dominated by imitation
learning methods due to the inherent shortcomings of RL algorithms.
Nonetheless, RL agents are able to discover highly successful policies when
provided with privileged ground truth representations of the environment. In
this work, we investigate what separates privileged RL agents from sensorimotor
agents for urban driving in order to bridge the gap between the two. We propose
vision-based deep learning models to approximate the privileged representations
from sensor data. In particular, we identify aspects of state representation
that are crucial for the success of the RL agent such as desired route
generation and stop zone prediction, and propose solutions to gradually develop
less privileged RL agents. We also observe that bird's-eye-view models trained
on offline datasets do not generalize to online RL training due to distribution
mismatch. Through rigorous evaluation on the CARLA simulation environment, we
shed light on the significance of the state representations in RL for
autonomous driving and point to unresolved challenges for future research.
Related papers
- An Examination of Offline-Trained Encoders in Vision-Based Deep Reinforcement Learning for Autonomous Driving [0.0]
Research investigates the challenges Deep Reinforcement Learning (DRL) faces in Partially Observable Markov Decision Processes (POMDP)
Our research adopts an offline-trained encoder to leverage large video datasets through self-supervised learning to learn generalizable representations.
We show that the features learned by watching BDD100K driving videos can be directly transferred to achieve lane following and collision avoidance in CARLA simulator.
arXiv Detail & Related papers (2024-09-02T14:16:23Z) - Demystifying the Physics of Deep Reinforcement Learning-Based Autonomous Vehicle Decision-Making [6.243971093896272]
We use a continuous proximal policy optimization-based DRL algorithm as the baseline model and add a multi-head attention framework in an open-source AV simulation environment.
We show that the weights in the first head encode the positions of the neighboring vehicles while the second head focuses on the leader vehicle exclusively.
arXiv Detail & Related papers (2024-03-18T02:59:13Z) - Learning Realistic Traffic Agents in Closed-loop [36.38063449192355]
Reinforcement learning (RL) can train traffic agents to avoid infractions, but using RL alone results in unhuman-like driving behaviors.
We propose Reinforcing Traffic Rules (RTR) to match expert demonstrations under a traffic compliance constraint.
Our experiments show that RTR learns more realistic and generalizable traffic simulation policies.
arXiv Detail & Related papers (2023-11-02T16:55:23Z) - Action and Trajectory Planning for Urban Autonomous Driving with
Hierarchical Reinforcement Learning [1.3397650653650457]
We propose an action and trajectory planner using Hierarchical Reinforcement Learning (atHRL) method.
We empirically verify the efficacy of atHRL through extensive experiments in complex urban driving scenarios.
arXiv Detail & Related papers (2023-06-28T07:11:02Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Agent-Controller Representations: Principled Offline RL with Rich
Exogenous Information [49.06422815335159]
Learning to control an agent from data collected offline is vital for real-world applications of reinforcement learning (RL)
This paper introduces offline RL benchmarks offering the ability to study this problem.
We find that contemporary representation learning techniques can fail on datasets where the noise is a complex and time dependent process.
arXiv Detail & Related papers (2022-10-31T22:12:48Z) - DriverGym: Democratising Reinforcement Learning for Autonomous Driving [75.91049219123899]
We propose DriverGym, an open-source environment for developing reinforcement learning algorithms for autonomous driving.
DriverGym provides access to more than 1000 hours of expert logged data and also supports reactive and data-driven agent behavior.
The performance of an RL policy can be easily validated on real-world data using our extensive and flexible closed-loop evaluation protocol.
arXiv Detail & Related papers (2021-11-12T11:47:08Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
arXiv Detail & Related papers (2021-07-18T00:00:48Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
offline reinforcement learning (RL) refers to the problem of learning policies from a static dataset of environment interactions.
We build on recent advances in model-based algorithms for offline RL, and extend them to high-dimensional visual observation spaces.
Our approach is both tractable in practice and corresponds to maximizing a lower bound of the ELBO in the unknown POMDP.
arXiv Detail & Related papers (2020-12-21T18:28:17Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
A novel framework is proposed to allow reinforcement learning-based vehicular association, resource block (RB) allocation, and content selection of cooperative perception messages (CPMs)
A federated RL approach is introduced in order to speed up the training process across vehicles.
Results show that federated RL improves the training process, where better policies can be achieved within the same amount of time compared to the non-federated approach.
arXiv Detail & Related papers (2020-12-07T02:09:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.