Fault-Tolerant One-Bit Addition with the Smallest Interesting Colour
Code
- URL: http://arxiv.org/abs/2309.09893v1
- Date: Mon, 18 Sep 2023 15:56:14 GMT
- Title: Fault-Tolerant One-Bit Addition with the Smallest Interesting Colour
Code
- Authors: Yang Wang, Selwyn Simsek, Thomas M. Gatterman, Justin A. Gerber, Kevin
Gilmore, Dan Gresh, Nathan Hewitt, Chandler V. Horst, Mitchell Matheny,
Tanner Mengle, Brian Neyenhuis, Ben Criger
- Abstract summary: We implement a small quantum algorithm, one-qubit addition, fault-tolerantly on the Quantinuum H1-1 quantum computer.
We observe arithmetic errors with a rate of $sim 1.1 times 10-3$ for the fault-tolerant circuit and $sim 9.5 times 10-3$ for the unencoded circuit.
- Score: 2.5553228515450765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault-tolerant operations based on stabilizer codes are the state of the art
in suppressing error rates in quantum computations. Most such codes do not
permit a straightforward implementation of non-Clifford logical operations,
which are necessary to define a universal gate set. As a result,
implementations of these operations must either use error-correcting codes with
more complicated error correction procedures or gate teleportation and magic
states, which are prepared at the logical level, increasing overhead to a
degree that precludes near-term implementation. In this work, we implement a
small quantum algorithm, one-qubit addition, fault-tolerantly on the Quantinuum
H1-1 quantum computer, using the [[8,3,2]] colour code. By removing unnecessary
error-correction circuits and using low-overhead techniques for fault-tolerant
preparation and measurement, we reduce the number of error-prone two-qubit
gates and measurements to 36. We observe arithmetic errors with a rate of $\sim
1.1 \times 10^{-3}$ for the fault-tolerant circuit and $\sim 9.5 \times
10^{-3}$ for the unencoded circuit.
Related papers
- Weakly Fault-Tolerant Computation in a Quantum Error-Detecting Code [0.0]
Many current quantum error correcting codes that achieve full fault-tolerance suffer from having low ratios of logical to physical qubits and significant overhead.
We propose a middle ground: constructions in the [[n,n-2,2]] quantum error detecting code that can detect any error from a single faulty gate.
arXiv Detail & Related papers (2024-08-27T07:25:36Z) - Quantum error correction below the surface code threshold [107.92016014248976]
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit.
We present two surface code memories operating below a critical threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder.
Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.
arXiv Detail & Related papers (2024-08-24T23:08:50Z) - Experimental fault-tolerant code switching [1.9088985324817254]
We present the first experimental implementation of fault-tolerant code switching between two codes.
We construct logical circuits and prepare 12 different logical states which are not accessible in a fault-tolerant way within a single code.
Our results experimentally open up a new route towards deterministic control over logical qubits with low auxiliary qubit overhead.
arXiv Detail & Related papers (2024-03-20T16:40:57Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Fault-Tolerant Computing with Single Qudit Encoding [49.89725935672549]
We discuss stabilizer quantum-error correction codes implemented in a single multi-level qudit.
These codes can be customized to the specific physical errors on the qudit, effectively suppressing them.
We demonstrate a Fault-Tolerant implementation on molecular spin qudits, showcasing nearly exponential error suppression with only linear qudit size growth.
arXiv Detail & Related papers (2023-07-20T10:51:23Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Realization of real-time fault-tolerant quantum error correction [0.0]
We use a ten qubit QCCD trapped-ion quantum computer to encode a single logical qubit.
We measure an average logical SPAM error of $1.7(6) times 10-3$, compared to the average physical SPAM error $2.4(8) times 10-3$ of our qubits.
arXiv Detail & Related papers (2021-07-15T17:57:59Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Fault-Tolerant Operation of a Quantum Error-Correction Code [1.835073691235972]
Quantum error correction protects fragile quantum information by encoding it into a larger quantum system.
Fault-tolerant circuits contain the spread of errors while operating the logical qubit.
We show that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems.
arXiv Detail & Related papers (2020-09-24T04:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.