Holographic Limitations and Corrections to Quantum Information Protocols
- URL: http://arxiv.org/abs/2309.09939v4
- Date: Wed, 14 Feb 2024 10:47:08 GMT
- Title: Holographic Limitations and Corrections to Quantum Information Protocols
- Authors: Stefano Pirandola
- Abstract summary: We discuss the limitations imposed on entanglement distribution, quantum teleportation, and quantum communication by holographic bounds.
For continuous-variable (CV) quantum information, we show how the naive application of holographic corrections disrupts well-established results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss the limitations imposed on entanglement distribution, quantum
teleportation, and quantum communication by holographic bounds, such as the
Bekenstein bound and Susskind's spherical entropy bound. For
continuous-variable (CV) quantum information, we show how the naive application
of holographic corrections disrupts well-established results. These corrections
render perfect CV teleportation impossible, preclude uniform convergence in the
teleportation simulation of lossy quantum channels, and impose a revised PLOB
bound for quantum communication. While these mathematical corrections do not
immediately impact practical quantum technologies, they are critical for a
deeper theoretical understanding of quantum information theory.
Related papers
- Quantum Information Processing, Sensing and Communications: Their Myths, Realities and Futures [61.25494706587422]
The state-of-the-art, knowledge gaps and future evolution of quantum machine learning are discussed.
We conclude with a set of promising future research ideas in the field of ultimately secure quantum communications.
arXiv Detail & Related papers (2024-12-01T22:28:02Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Finite-round quantum error correction on symmetric quantum sensors [8.339831319589134]
Heisenberg limit provides a quadratic improvement over the standard quantum limit.
It remains elusive because of the inevitable presence of noise decohering quantum sensors.
We side-step this no-go result by using an optimal finite number of rounds of quantum error correction.
arXiv Detail & Related papers (2022-12-12T23:41:51Z) - Effective information bounds in modified quantum mechanics [0.03492633112489883]
We show that quantum systems undergo corrections to the quantum speed limit which, in turn, imply the modification of the Heisenberg limit for parameter estimation.
For some nonlocal models inspired by quantum gravity, the bounds are found to oscillate in time, an effect that could be tested in future high-precision quantum experiments.
arXiv Detail & Related papers (2022-11-16T21:37:04Z) - Quantum Error Correction: Noise-adapted Techniques and Applications [2.122752621320654]
Theory of quantum error correction provides a scheme by which the effects of such noise on quantum states can be mitigated.
We focus on recent theoretical advances in the domain of noise-adapted QEC, and highlight some key open questions.
We conclude with a review of the theory of quantum fault tolerance which gives a quantitative estimate of the physical noise threshold below which error-resilient quantum computation is possible.
arXiv Detail & Related papers (2022-07-31T05:23:50Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Decoherence and Quantum Error Correction for Quantum Computing and
Communications [0.0]
The protection of quantum information via quantum error correction codes (QECC) is of paramount importance to construct fully operational quantum computers.
The nature of decoherence is studied and mathematically modelled; and QECCs are designed and optimized so that they exhibit better error correction capabilities.
arXiv Detail & Related papers (2022-02-17T11:26:58Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.