BDEC:Brain Deep Embedded Clustering model
- URL: http://arxiv.org/abs/2309.09984v1
- Date: Tue, 12 Sep 2023 02:42:11 GMT
- Title: BDEC:Brain Deep Embedded Clustering model
- Authors: Xiaoxiao Ma, Chunzhi Yi, Zhicai Zhong, Hui Zhou, Baichun Wei, Haiqi
Zhu and Feng Jiang
- Abstract summary: We develop an assumption-free model called as BDEC, which leverages the robust data fitting capability of deep learning.
By comparing with nine commonly used brain parcellation methods, the BDEC model demonstrates significantly superior performance.
These results suggest that the BDEC parcellation captures the functional characteristics of the brain and holds promise for future voxel-wise brain network analysis.
- Score: 10.560936895047321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An essential premise for neuroscience brain network analysis is the
successful segmentation of the cerebral cortex into functionally homogeneous
regions. Resting-state functional magnetic resonance imaging (rs-fMRI),
capturing the spontaneous activities of the brain, provides the potential for
cortical parcellation. Previous parcellation methods can be roughly categorized
into three groups, mainly employing either local gradient, global similarity,
or a combination of both. The traditional clustering algorithms, such as
"K-means" and "Spectral clustering" may affect the reproducibility or the
biological interpretation of parcellations; The region growing-based methods
influence the expression of functional homogeneity in the brain at a large
scale; The parcellation method based on probabilistic graph models inevitably
introduce model assumption biases. In this work, we develop an assumption-free
model called as BDEC, which leverages the robust data fitting capability of
deep learning. To the best of our knowledge, this is the first study that uses
deep learning algorithm for rs-fMRI-based parcellation. By comparing with nine
commonly used brain parcellation methods, the BDEC model demonstrates
significantly superior performance in various functional homogeneity
indicators. Furthermore, it exhibits favorable results in terms of validity,
network analysis, task homogeneity, and generalization capability. These
results suggest that the BDEC parcellation captures the functional
characteristics of the brain and holds promise for future voxel-wise brain
network analysis in the dimensionality reduction of fMRI data.
Related papers
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Leveraging Brain Modularity Prior for Interpretable Representation
Learning of fMRI [38.236414924531196]
Resting-state functional magnetic resonance imaging (rs-fMRI) can reflect spontaneous neural activities in brain.
Previous studies propose to extract fMRI representations through diverse machine/deep learning methods for subsequent analysis.
This paper proposes a Brain Modularity-constrained dynamic Representation learning (BMR) framework for interpretable fMRI analysis.
arXiv Detail & Related papers (2023-06-24T23:45:47Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
Graphs are a natural representation of brain activity derived from functional magnetic imaging (fMRI) data.
It is well known that clusters of anatomical brain regions, known as functional connectivity networks (FCNs), encode temporal relationships which can serve as useful biomarkers for understanding brain function and dysfunction.
Previous works, however, ignore the temporal dynamics of the brain and focus on static graphs.
We propose a dynamic brain graph deep generative model (DBGDGM) which simultaneously clusters brain regions into temporally evolving communities and learns dynamic unsupervised node embeddings.
arXiv Detail & Related papers (2023-01-26T20:45:30Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
We develop a novel attention mesh convolution model to predict cortical gyro-sulcal segmentation maps on individual brains.
Experiments show that the prediction performance via our model outperforms other state-of-the-art models.
arXiv Detail & Related papers (2022-05-21T14:08:53Z) - Functional Parcellation of fMRI data using multistage k-means clustering [0.9786690381850356]
Clustering is often used to generate functional parcellation.
In this work, we present a clustering algorithm for resting state and task fMRI data.
arXiv Detail & Related papers (2022-02-19T20:30:02Z) - Ensemble manifold based regularized multi-modal graph convolutional
network for cognitive ability prediction [33.03449099154264]
Multi-modal functional magnetic resonance imaging (fMRI) can be used to make predictions about individual behavioral and cognitive traits based on brain connectivity networks.
We propose an interpretable multi-modal graph convolutional network (MGCN) model, incorporating the fMRI time series and the functional connectivity (FC) between each pair of brain regions.
We validate our MGCN model on the Philadelphia Neurodevelopmental Cohort to predict individual wide range achievement test (WRAT) score.
arXiv Detail & Related papers (2021-01-20T20:53:07Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Towards a predictive spatio-temporal representation of brain data [0.2580765958706854]
We show that fMRI datasets are constituted by complex and highly heterogeneous timeseries.
We compare various modelling techniques from deep learning and geometric deep learning to pave the way for future research.
We hope that our methodological advances can ultimately be clinically and computationally relevant by leading to a more nuanced understanding of the brain dynamics in health and disease.
arXiv Detail & Related papers (2020-02-29T18:49:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.