Electrically coupled optomechanical cavities as a tool for quantum
nondemolition measurement
- URL: http://arxiv.org/abs/2309.10159v1
- Date: Mon, 18 Sep 2023 21:15:01 GMT
- Title: Electrically coupled optomechanical cavities as a tool for quantum
nondemolition measurement
- Authors: Jan W\'ojcik and Grzegorz Chimczak
- Abstract summary: We find that coupling two optomechanical cavities via Coulomb force leads to cross-Kerr interactions between those cavities.
We show that such systems may be ideal for a protocol of quantum non-demolition measurement because it is easy to eliminate the self-phase modulation effect.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new model of two electrically coupled optomechanical cavities.
This model is based on the recently presented [Physical Review A \textbf{103}
(2021) 043509]. We found that coupling two optomechanical cavities via Coulomb
force leads to cross-Kerr interactions between those cavities. We show that
such systems may be ideal for a protocol of quantum non-demolition measurement
because it is easy to eliminate the self-phase modulation effect. Moreover,
nonlinearities in our model are based on easily adjustable parameters, and
therefore, given recent experimental studies, we believe that experimental
realization of a cross-Kerr interaction via Coulomb force coupling is feasible.
Related papers
- Understanding the Cavity Born-Oppenheimer Approximation [0.0]
vibrational strong coupling between molecular vibrations and light modes can significantly change molecular properties.
We show that we can recover CBO energies and spectra to high accuracy using only out-of-cavity quantities.
arXiv Detail & Related papers (2024-01-07T16:05:18Z) - Quantum Phase Transitions in Optomechanical Systems [2.451326684641447]
We investigate the ground state properties of an optomechanical system consisting of a coupled cavity and mechanical modes.
By coupling atoms to the cavity mode, the hybrid system can undergo a quantum phase transition (QPT) at a hybrid critical point.
These results suggest that this optomechanical system complements other phase transition models for exploring novel critical phenomena.
arXiv Detail & Related papers (2023-08-29T13:09:48Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Prospects of cooling a mechanical resonator with a transmon qubit in
c-QED setup [0.0]
We study a hybrid system consisting of a mechanical resonator longitudinally coupled to a transmon qubit.
The coupling between the mechanical resonator and transmon qubit can be implemented by modulation of the SQUID inductance.
measurements of the thermomechanical motion is possible in the dispersive limit, while maintaining a large coupling between qubit and mechanical mode.
arXiv Detail & Related papers (2022-05-14T10:00:54Z) - Exploring quantum correlations in a hybrid optomechanical system [0.0]
We propose a scheme of two coupled optomechanical cavities to enhance the intracavity entanglement.
Photon hopping is employed to establish couplings between optical modes, while phonon is utilized to establish couplings between mechanical tunneling resonators.
arXiv Detail & Related papers (2022-04-16T08:47:50Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Atomic self-organization emerging from tunable quadrature coupling [5.624813092014403]
We propose a novel scheme to couple two density-wave degrees of freedom of a BEC to two quadratures of the cavity field.
We unravel a dynamically unstable state induced by the cavity dissipation.
Our work enriches the quantum simulation toolbox in the cavity-quantum-electrodynamics system.
arXiv Detail & Related papers (2020-04-07T13:25:44Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.