Quantum Phase Transitions in Optomechanical Systems
- URL: http://arxiv.org/abs/2308.15278v2
- Date: Fri, 2 Feb 2024 03:33:16 GMT
- Title: Quantum Phase Transitions in Optomechanical Systems
- Authors: Bo Wang, Franco Nori, Ze-Liang Xiang
- Abstract summary: We investigate the ground state properties of an optomechanical system consisting of a coupled cavity and mechanical modes.
By coupling atoms to the cavity mode, the hybrid system can undergo a quantum phase transition (QPT) at a hybrid critical point.
These results suggest that this optomechanical system complements other phase transition models for exploring novel critical phenomena.
- Score: 2.451326684641447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this letter, we investigate the ground state properties of an
optomechanical system consisting of a coupled cavity and mechanical modes. An
exact solution is given when the ratio $\eta$ between the cavity and mechanical
frequencies tends to infinity. This solution reveals a coherent photon
occupation in the ground state by breaking continuous or discrete symmetries,
exhibiting an equilibrium quantum phase transition (QPT). In the $U(1)$-broken
phase, an unstable Goldstone mode can be excited. In the model featuring $Z_2$
symmetry, we discover the mutually (in the finite $\eta$) or unidirectionally
(in $\eta \rightarrow \infty$) dependent relation between the squeezed vacuum
of the cavity and mechanical modes. In particular, when the cavity is driven by
a squeezed field along the required squeezing parameter, it enables modifying
the region of $Z_2$-broken phase and significantly reducing the coupling
strength to reach QPTs. Furthermore, by coupling atoms to the cavity mode, the
hybrid system can undergo a QPT at a hybrid critical point, which is
cooperatively determined by the optomechanical and light-atom systems. These
results suggest that this optomechanical system complements other phase
transition models for exploring novel critical phenomena.
Related papers
- Spontaneous polarized phase transitions and symmetry breaking of an ultracold atomic ensemble in a Raman-assisted cavity [9.354561963143967]
We investigate an ensemble consisting of $N$ four-level atoms within an optical cavity coupled to the single cavity mode and external laser fields.
Some novel phases characterized by the phase differences between the polarized cavity field or the atomic spin excitation and the Raman laser are found analytically.
It is found that besides the continuous $U(1)$ and discrete $mathbbZ$ symmetries, the system also exhibits two reflection symmetries $sigma_v$s, a central symmetry $C$ in the abstract position-momentum representation, and a discrete reflection-time symmetry
arXiv Detail & Related papers (2024-08-19T16:10:47Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - $\mathcal{PT}-$symmetry and chaos control via dissipative optomechanical
coupling [0.0]
We study a dissipative, mechanically coupled optomechanical system that accommodates gain and loss.
The gain is engineered by driven a purely dispersive optomechanical cavity with a blue-detuned electromagnetic field.
arXiv Detail & Related papers (2023-02-25T11:41:45Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Controlling mode orientations and frequencies in levitated cavity
optomechanics [0.0]
coherent-scattering (CS) set-up allows quantum ground state cooling of a levitated nanoparticles.
We demonstrate experimentally that it is possible to strongly cavity cool and control the em unperturbed modes.
Findings have implications for directional force sensing using CS set-ups.
arXiv Detail & Related papers (2022-04-20T17:07:31Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED
set-up [0.0]
We show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED set-up.
Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system.
arXiv Detail & Related papers (2020-04-16T09:08:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.