論文の概要: Harnessing the Zero-Shot Power of Instruction-Tuned Large Language Model in End-to-End Speech Recognition
- arxiv url: http://arxiv.org/abs/2309.10524v2
- Date: Mon, 30 Sep 2024 06:22:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:59:02.526544
- Title: Harnessing the Zero-Shot Power of Instruction-Tuned Large Language Model in End-to-End Speech Recognition
- Title(参考訳): エンド・ツー・エンド音声認識における命令付き大言語モデルのゼロショットパワーの調和
- Authors: Yosuke Higuchi, Tetsuji Ogawa, Tetsunori Kobayashi,
- Abstract要約: 自動音声認識(ASR)におけるテキスト生成プロセスの指導に,命令調整付き大言語モデル(LLM)を用いることを提案する。
提案手法はCTCとアテンションアーキテクチャを併用し,LLMはデコーダのフロントエンド特徴抽出器として機能する。
実験結果から,LLM誘導モデルによる単語誤り率の相対的な増加率は,主要なベンチマークで約13%であった。
- 参考スコア(独自算出の注目度): 23.172469312225694
- License:
- Abstract: We propose to utilize an instruction-tuned large language model (LLM) for guiding the text generation process in automatic speech recognition (ASR). Modern large language models (LLMs) are adept at performing various text generation tasks through zero-shot learning, prompted with instructions designed for specific objectives. This paper explores the potential of LLMs to derive linguistic information that can facilitate text generation in end-to-end ASR models. Specifically, we instruct an LLM to correct grammatical errors in an ASR hypothesis and use the LLM-derived representations to refine the output further. The proposed model is built on the joint CTC and attention architecture, with the LLM serving as a front-end feature extractor for the decoder. The ASR hypothesis, subject to correction, is obtained from the encoder via CTC decoding and fed into the LLM along with a specific instruction. The decoder subsequently takes as input the LLM output to perform token predictions, combining acoustic information from the encoder and the powerful linguistic information provided by the LLM. Experimental results show that the proposed LLM-guided model achieves a relative gain of approximately 13\% in word error rates across major benchmarks.
- Abstract(参考訳): 本稿では,自動音声認識(ASR)におけるテキスト生成プロセスの指導に,命令調整付き大言語モデル(LLM)を用いることを提案する。
現代の大規模言語モデル(LLM)は、ゼロショット学習を通じて様々なテキスト生成タスクを実行するのに適しており、特定の目的のために設計された命令で誘導される。
本稿では, エンドツーエンドのASRモデルにおいて, テキスト生成を容易にする言語情報を導出するLLMの可能性について検討する。
具体的には、ASR仮説の文法的誤りを訂正するLLMを指示し、LLM由来の表現を用いて出力をさらに洗練する。
提案手法はCTCとアテンションアーキテクチャを併用し,LLMはデコーダのフロントエンド特徴抽出器として機能する。
補正対象のASR仮説は、CTCデコードを介してエンコーダから取得され、特定の命令とともにLSMに入力される。
その後、デコーダはLLM出力を入力としてトークン予測を行い、エンコーダからの音響情報とLLMが提供する強力な言語情報を組み合わせる。
実験結果から,LLM誘導モデルによる単語誤り率の相対的な増加率は,主要なベンチマークで約13%であった。
関連論文リスト
- Investigating Decoder-only Large Language Models for Speech-to-text Translation [39.17113782374464]
大規模言語モデル (LLM) は、様々なドメインにまたがる例外的な推論能力、一般化可能性、およびレイテンシで知られている。
我々は,LLMが直接符号化された音声表現を消費し,テキスト翻訳を生成することができるデコーダのみのアーキテクチャを提案する。
本モデルでは,プロプライエタリなデータを必要としないモデル間で,CoVoST 2およびFLEURSの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-07-03T14:42:49Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - Large Language Models are Efficient Learners of Noise-Robust Speech
Recognition [65.95847272465124]
大規模言語モデル(LLM)の最近の進歩は、自動音声認識(ASR)のための生成誤り訂正(GER)を促進している。
本研究では,このベンチマークをノイズの多い条件に拡張し,GERのデノナイジングをLLMに教えることができるかを検討する。
最新のLLM実験では,単語誤り率を最大53.9%改善し,新たなブレークスルーを実現している。
論文 参考訳(メタデータ) (2024-01-19T01:29:27Z) - Boosting Large Language Model for Speech Synthesis: An Empirical Study [86.89548753080432]
大規模言語モデル(LLM)は自然言語処理において大きな進歩を遂げており、言語能力は音声や視覚など他のモダリティにも拡張されている。
我々は,事前学習したLLM LLaMA/OPTと音声合成モデルVALL-Eを組み合わせることで,LLMの強化と音声生成能力の総合的な実証調査を行う。
テキストエンコーダとしてLLMとVALL-Eを組み合わせることで,LLMとVALL-Eの3つの統合手法を比較した。
論文 参考訳(メタデータ) (2023-12-30T14:20:04Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - Generative Speech Recognition Error Correction with Large Language
Models and Task-Activating Prompting [32.70214938434769]
本稿では,大規模言語モデル(LLM)の音声認識後処理機能について検討する。
我々は、ゼロショットと少数ショットのインコンテキスト学習と、新しいタスクアクティベーション・プロンプト法という、異なるプロンプト方式を評価する。
凍結LDMを用いた文脈内学習でのみ再構成を行うことで、ドメインチューニングLMによる再構成と競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2023-09-27T13:36:03Z) - Prompting Large Language Models with Speech Recognition Abilities [31.77576008965215]
我々は,音声認識を行うための小型オーディオエンコーダを直接取り付けることで,大規模言語モデルの能力を拡張した。
MultilingualSpeechの実験では、コンバータエンコーダをオープンソースのLLaMA-7Bに組み込むことで、モノリンガルベースラインを18%上回る結果となった。
論文 参考訳(メタデータ) (2023-07-21T08:39:15Z) - Exploring the Integration of Large Language Models into Automatic Speech
Recognition Systems: An Empirical Study [0.0]
本稿では,Large Language Models (LLM) と自動音声認識(ASR)システムの統合について検討する。
我々の主な焦点は、LLMのコンテキスト内学習機能を用いて、ASRシステムの性能を向上させる可能性を調査することである。
論文 参考訳(メタデータ) (2023-07-13T02:31:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。