Enhancing quantum state tomography via resource-efficient attention-based neural networks
- URL: http://arxiv.org/abs/2309.10616v2
- Date: Wed, 4 Sep 2024 18:43:35 GMT
- Title: Enhancing quantum state tomography via resource-efficient attention-based neural networks
- Authors: Adriano Macarone Palmieri, Guillem Müller-Rigat, Anubhav Kumar Srivastava, Maciej Lewenstein, Grzegorz Rajchel-Mieldzioć, Marcin Płodzień,
- Abstract summary: We propose a new quantum state tomography protocol combining standard quantum state reconstruction methods with an attention-based neural network architecture.
We show how the proposed protocol is able to improve the averaged fidelity reconstruction over linear inversion and maximum-likelihood estimation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resource-efficient quantum state tomography is one of the key ingredients of future quantum technologies. In this work, we propose a new tomography protocol combining standard quantum state reconstruction methods with an attention-based neural network architecture. We show how the proposed protocol is able to improve the averaged fidelity reconstruction over linear inversion and maximum-likelihood estimation in the finite-statistics regime, reducing at least by an order of magnitude the amount of necessary training data. We demonstrate the potential use of our protocol in physically relevant scenarios, in particular, to certify metrological resources in the form of many-body entanglement generated during the spin squeezing protocols. This could be implemented with the current quantum simulator platforms, such as trapped ions, and ultra-cold atoms in optical lattices.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Universal Quantum Tomography With Deep Neural Networks [0.0]
We present two neural networks based approach for both pure and mixed quantum state tomography.
We demonstrate that our proposed methods can achieve state-of-the-art results in reconstructing mixed quantum states from experimental data.
arXiv Detail & Related papers (2024-07-01T19:09:18Z) - On the Characterization of Quantum Flip Stars with Quantum Network
Tomography [11.545489116237102]
Quantum Network Tomography refers to the characterization of channel noise in a quantum network through end-to-end measurements.
We propose network tomography protocols for quantum star networks formed by quantum channels characterized by a single, non-trivial Pauli operator.
Our results further the end-to-end characterization of quantum bit-flip star networks by introducing tomography protocols where state distribution and measurements are designed separately.
arXiv Detail & Related papers (2023-07-12T00:18:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Neural-network quantum state tomography [0.0]
We revisit the application of neural networks techniques to quantum state tomography.
We confirm that the positivity constraint can be successfully implemented with trained networks that convert outputs from standard feed-forward neural networks to valid descriptions of quantum states.
arXiv Detail & Related papers (2022-06-14T10:37:54Z) - Quantum Compressive Sensing: Mathematical Machinery, Quantum Algorithms,
and Quantum Circuitry [10.286119086329762]
Compressive sensing is a protocol that facilitates reconstruction of large signals from relatively few measurements.
Recent efforts in the literature consider instead a data-driven approach, training tensor networks to learn the structure of signals of interest.
We present an alternative "quantum" protocol, in which the state of the tensor network is a quantum state over a set of entangled qubits.
arXiv Detail & Related papers (2022-04-27T16:20:28Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.