ActiveAI: Introducing AI Literacy for Middle School Learners with
Goal-based Scenario Learning
- URL: http://arxiv.org/abs/2309.12337v1
- Date: Mon, 21 Aug 2023 11:43:43 GMT
- Title: ActiveAI: Introducing AI Literacy for Middle School Learners with
Goal-based Scenario Learning
- Authors: Ying Jui Tseng, Gautam Yadav
- Abstract summary: The ActiveAI project addresses key challenges in AI education for grades 7-9 students.
The app incorporates a variety of learner inputs like sliders, steppers, and collectors to enhance understanding.
The project is currently in the implementation stage, leveraging the intelligent tutor design principles for app development.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The ActiveAI project addresses key challenges in AI education for grades 7-9
students by providing an engaging AI literacy learning experience based on the
AI4K12 knowledge framework. Utilizing learning science mechanisms such as
goal-based scenarios, immediate feedback, project-based learning, and
intelligent agents, the app incorporates a variety of learner inputs like
sliders, steppers, and collectors to enhance understanding. In these courses,
students work on real-world scenarios like analyzing sentiment in social media
comments. This helps them learn to effectively engage with AI systems and
develop their ability to evaluate AI-generated output. The Learning Engineering
Process (LEP) guided the project's creation and data instrumentation, focusing
on design and impact. The project is currently in the implementation stage,
leveraging the intelligent tutor design principles for app development. The
extended abstract presents the foundational design and development, with
further evaluation and research to be conducted in the future.
Related papers
- From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Charting the Future of AI in Project-Based Learning: A Co-Design
Exploration with Students [35.05435052195561]
The increasing use of Artificial Intelligence (AI) by students in learning presents new challenges for assessing their learning outcomes.
This paper introduces a co-design study to explore the potential of students' AI usage data as a novel material for assessment.
arXiv Detail & Related papers (2024-01-26T14:49:29Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education [0.2812395851874055]
This paper presents a novel framework, Artificial Intelligence-Enabled Intelligent Assistant (AIIA) for personalized and adaptive learning in higher education.
The AIIA system leverages advanced AI and Natural Language Processing (NLP) techniques to create an interactive and engaging learning platform.
arXiv Detail & Related papers (2023-09-19T19:31:15Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Towards Systems Education for Artificial Intelligence: A Course Practice
in Intelligent Computing Architectures [6.440694188229122]
This course aims to teach students for designing AI accelerators on FPGA platforms.
The elaborated course contents include lecture notes and related technical materials.
Some teaching experiences and effects are discussed as well as some potential improvements in the future.
arXiv Detail & Related papers (2022-06-22T11:48:04Z) - Competency Model Approach to AI Literacy: Research-based Path from
Initial Framework to Model [0.0]
Research on AI Literacy could lead to an effective and practical platform for developing these skills.
We propose and advocate for a pathway for developing AI Literacy as a pragmatic and useful tool for AI education.
arXiv Detail & Related papers (2021-08-12T15:42:32Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
The MineRL BASALT competition aims to spur forward research on this important class of techniques.
We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions.
We provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline.
arXiv Detail & Related papers (2021-07-05T12:18:17Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - AI from concrete to abstract: demystifying artificial intelligence to
the general public [0.0]
This article presents a new methodology, AI from concrete to abstract (AIcon2abs)
The main strategy adopted by is to promote a demystification of artificial intelligence.
The simplicity of the WiSARD weightless artificial neural network model enables easy visualization and understanding of training and classification tasks.
arXiv Detail & Related papers (2020-06-07T01:14:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.