論文の概要: A Geometric Flow Approach for Segmentation of Images with Inhomongeneous
Intensity and Missing Boundaries
- arxiv url: http://arxiv.org/abs/2309.10935v1
- Date: Tue, 19 Sep 2023 21:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 17:57:31.795325
- Title: A Geometric Flow Approach for Segmentation of Images with Inhomongeneous
Intensity and Missing Boundaries
- Title(参考訳): 不均質な強度と欠落境界を持つ画像のセグメンテーションに対する幾何学的フローアプローチ
- Authors: Paramjyoti Mohapatra, Richard Lartey, Weihong Guo, Michael Judkovich,
and Xiaojuan Li
- Abstract要約: 本稿では,新しい強度補正法と半自動アクティブな輪郭型セグメンテーション手法を提案する。
数値実験により,提案手法が比較手法よりもはるかに優れた結果をもたらすことが示された。
- 参考スコア(独自算出の注目度): 2.5477850853771145
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Image segmentation is a complex mathematical problem, especially for images
that contain intensity inhomogeneity and tightly packed objects with missing
boundaries in between. For instance, Magnetic Resonance (MR) muscle images
often contain both of these issues, making muscle segmentation especially
difficult. In this paper we propose a novel intensity correction and a
semi-automatic active contour based segmentation approach. The approach uses a
geometric flow that incorporates a reproducing kernel Hilbert space (RKHS) edge
detector and a geodesic distance penalty term from a set of markers and
anti-markers. We test the proposed scheme on MR muscle segmentation and compare
with some state of the art methods. To help deal with the intensity
inhomogeneity in this particular kind of image, a new approach to estimate the
bias field using a fat fraction image, called Prior Bias-Corrected Fuzzy
C-means (PBCFCM), is introduced. Numerical experiments show that the proposed
scheme leads to significantly better results than compared ones. The average
dice values of the proposed method are 92.5%, 85.3%, 85.3% for quadriceps,
hamstrings and other muscle groups while other approaches are at least 10%
worse.
- Abstract(参考訳): 画像分割は複雑な数学的問題であり、特に強度の不均質性を含む画像と、その間に境界が欠けている密集した物体についてである。
例えば、磁気共鳴(MR)筋画像はこれらの問題の両方を含むことが多く、特に筋肉のセグメンテーションが困難である。
本稿では,新しい強度補正とセミオートマチック・アクティブ・輪郭に基づくセグメンテーション手法を提案する。
このアプローチでは、再生成核ヒルベルト空間(rkhs)エッジ検出器と、マーカーとアンチマーカーの集合からの測地距離ペナルティ項を組み込んだ幾何学的フローを用いる。
提案手法をMR筋分節法で検証し,術式との比較を行った。
このような画像の強度不均一性に対処するために, PBCFCM (Presideor Bias-Corrected Fuzzy C-means) と呼ばれる, 脂肪分画を用いたバイアス場の推定手法が導入された。
数値実験により,提案手法が比較手法よりも有意に優れた結果をもたらすことが示された。
提案法の平均サイコロは92.5%,85.3%,85.3%,四肢四頭筋,ハムストリングなどの筋群では85.3%,他のアプローチでは10%以上であった。
関連論文リスト
- Learning to Rank Patches for Unbiased Image Redundancy Reduction [80.93989115541966]
画像は、隣接する領域の画素が空間的に相関しているため、空間的冗長性に悩まされる。
既存のアプローチでは、意味の少ない画像領域を減らし、この制限を克服しようとしている。
本稿では,Learning to Rank Patchesと呼ばれる画像冗長性低減のための自己教師型フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T13:12:41Z) - Cross-modal tumor segmentation using generative blending augmentation and self training [1.6440045168835438]
本稿では,新しいデータ拡張手法によって強化された従来の画像合成に基づくクロスモーダルセグメンテーション手法を提案する。
Generative Blending Augmentation (GBA)は、単一のトレーニング画像から代表的生成特徴を学習し、腫瘍の外観を現実的に多様化させる。
提案手法は,MICCAI CrossMoDA 2022 チャレンジの検証および試験段階において,前庭神経ショーノマ(VS)セグメンテーションにおいて第1位となった。
論文 参考訳(メタデータ) (2023-04-04T11:01:46Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Difference of Anisotropic and Isotropic TV for Segmentation under Blur
and Poisson Noise [2.6381163133447836]
画像をスムーシング・アンド・スレッディング(SaT)セグメンテーションフレームワークを採用して、スムースなソリューションを見つけ、次に$k-meansで画像のセグメンテーションを行う。
具体的には、画像平滑化ステップにおいて、ムムフォードシャーモデルの最大雑音を正則化として、異方性全変動(AITV)の最大変動に置き換える。
スキームの有効性を検証するための収束解析が提供される。
論文 参考訳(メタデータ) (2023-01-06T01:14:56Z) - MSCDA: Multi-level Semantic-guided Contrast Improves Unsupervised Domain
Adaptation for Breast MRI Segmentation in Small Datasets [5.272836235045653]
マルチレベルセマンティック・ガイド・コントラスト・ドメイン・アダプティブ・フレームワークを提案する。
我々のアプローチは、ドメイン間の特徴表現を整合させるために、対照的な学習を伴う自己学習を取り入れている。
特に,ピクセル・ツー・ピクセル,ピクセル・ツー・セントロイド,セントロイド・ツー・セントロイドのコントラストを取り入れることで,コントラストの損失を増大させる。
論文 参考訳(メタデータ) (2023-01-04T19:16:55Z) - Image Segmentation with Adaptive Spatial Priors from Joint Registration [10.51970325349652]
大腿筋画像では、異なる筋肉が束ねられ、その間に明確な境界が存在しないことが多い。
関節登録から適応的な空間的先行性を持つセグメンテーションモデルを提案する。
人工大腿筋MR画像の合成モデルと大腿筋MR画像について検討した。
論文 参考訳(メタデータ) (2022-03-29T13:29:59Z) - A Weighted Difference of Anisotropic and Isotropic Total Variation for
Relaxed Mumford-Shah Color and Multiphase Image Segmentation [2.6381163133447836]
異方性および等方性の全変動の差を考慮した一括一括画像分割モデルを提案する。
また,カラー画像のセグメンテーションへの一般化についても論じる。
論文 参考訳(メタデータ) (2020-05-09T09:35:44Z) - Residual-driven Fuzzy C-Means Clustering for Image Segmentation [152.609322951917]
画像分割のための残留駆動型ファジィC平均(FCM)について詳述する。
この枠組みに基づいて,混合雑音分布の重み付けによる重み付き$ell_2$-norm忠実度項を示す。
その結果、既存のFCM関連アルゴリズムよりも提案アルゴリズムの有効性と効率が優れていることが示された。
論文 参考訳(メタデータ) (2020-04-15T15:46:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM)アルゴリズムは、形態的再構成操作とタイトウェーブレットフレーム変換を組み込んでいる。
特徴集合とその理想値の間の残差に対して$ell_0$正規化項を付与することにより、改良されたFCMアルゴリズムを提案する。
合成, 医用, カラー画像に対する実験結果から, 提案アルゴリズムは効率的かつ効率的であり, 他のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-14T10:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。