論文の概要: Accurate and Scalable Estimation of Epistemic Uncertainty for Graph
Neural Networks
- arxiv url: http://arxiv.org/abs/2309.10976v1
- Date: Wed, 20 Sep 2023 00:35:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 17:43:15.697079
- Title: Accurate and Scalable Estimation of Epistemic Uncertainty for Graph
Neural Networks
- Title(参考訳): グラフニューラルネットワークにおける認識不確かさの高精度かつスケーラブルな推定
- Authors: Puja Trivedi, Mark Heimann, Rushil Anirudh, Danai Koutra, Jayaraman J.
Thiagarajan
- Abstract要約: 信頼性インジケータ(CI)は、分散シフト下でグラフニューラルネットワーク(GNN)の安全なデプロイには不可欠である。
表現率やモデルサイズの増加がCIパフォーマンスの向上につながるとは限らないことを示す。
我々は最近提案されたフレームワークを拡張する新しい単一モデルUQ手法であるG-$UQを提案する。
全体として、我々の研究は、新しいフレキシブルなGNN UQメソッドを導入するだけでなく、安全クリティカルなタスクに関するGNN CIに関する新たな洞察も提供する。
- 参考スコア(独自算出の注目度): 40.95782849532316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe deployment of graph neural networks (GNNs) under distribution shift
requires models to provide accurate confidence indicators (CI). However, while
it is well-known in computer vision that CI quality diminishes under
distribution shift, this behavior remains understudied for GNNs. Hence, we
begin with a case study on CI calibration under controlled structural and
feature distribution shifts and demonstrate that increased expressivity or
model size do not always lead to improved CI performance. Consequently, we
instead advocate for the use of epistemic uncertainty quantification (UQ)
methods to modulate CIs. To this end, we propose G-$\Delta$UQ, a new single
model UQ method that extends the recently proposed stochastic centering
framework to support structured data and partial stochasticity. Evaluated
across covariate, concept, and graph size shifts, G-$\Delta$UQ not only
outperforms several popular UQ methods in obtaining calibrated CIs, but also
outperforms alternatives when CIs are used for generalization gap prediction or
OOD detection. Overall, our work not only introduces a new, flexible GNN UQ
method, but also provides novel insights into GNN CIs on safety-critical tasks.
- Abstract(参考訳): 分散シフト下でのグラフニューラルネットワーク(GNN)の安全なデプロイには、正確な信頼度指標(CI)を提供するモデルが必要である。
しかし、コンピュータビジョンではci品質が分布シフトによって低下することはよく知られているが、gnnではこの行動は未検討のままである。
したがって、制御された構造および特徴分布シフトの下でのCIキャリブレーションのケーススタディから始め、表現率やモデルサイズの増加がCI性能の改善につながるとは限らないことを示す。
その結果、我々は、CIの変調に疫学不確実性定量化(UQ)法を使うことを提唱した。
この目的のために、構造化データと部分確率性をサポートするために、最近提案された確率中心化フレームワークを拡張した新しい単一モデルUQ手法であるG-$\Delta$UQを提案する。
共変量、概念、グラフサイズの変化によって評価され、G-$\Delta$UQは、校正CIを得る際の一般的なUQメソッドよりも優れているだけでなく、CIが一般化ギャップ予測やOOD検出に使用される場合の代替手段よりも優れている。
全体として、我々の研究は、新しいフレキシブルなGNN UQメソッドを導入するだけでなく、安全クリティカルなタスクに関するGNN CIに関する新たな洞察も提供する。
関連論文リスト
- Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
我々は,PE-GNN,Quantile Neural Networks,および再校正技術を完全非パラメトリックフレームワークに統合する新しい手法である,位置グラフ量子ニューラルネットワーク(PE-GQNN)を紹介する。
ベンチマークデータセットの実験では、PE-GQNNは予測精度と不確実性の定量化の両方で既存の最先端手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-09-27T16:02:12Z) - Conditional Shift-Robust Conformal Prediction for Graph Neural Network [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データの結果を予測する強力なツールとして登場した。
有効性にもかかわらず、GNNは堅牢な不確実性推定を提供する能力に制限がある。
本稿では,GNNに対する条件シフトロバスト(CondSR)の共形予測を提案する。
論文 参考訳(メタデータ) (2024-05-20T11:47:31Z) - Accurate and Scalable Estimation of Epistemic Uncertainty for Graph
Neural Networks [40.95782849532316]
固有GNNの不確実性推定を改善するための新しいトレーニングフレームワークを提案する。
我々のフレームワークは、新しいグラフアンカー戦略を通じて、データをグラフデータに中心付けるという原則に適応する。
本研究は,GNNの不確実性推定に関する知見を提供し,信頼度推定におけるG-$Delta$UQの有用性を実証する。
論文 参考訳(メタデータ) (2024-01-07T00:58:33Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - Uncertainty Quantification for Molecular Property Predictions with Graph Neural Architecture Search [2.711812013460678]
本稿では,分子特性予測のための自動不確実性定量化(UQ)手法であるAutoGNNUQを紹介する。
我々のアプローチでは、分散分解を用いてデータ(アラート)とモデル(エステミック)の不確実性を分離し、それらを減らすための貴重な洞察を提供する。
AutoGNNUQは、正確な不確実性定量化が意思決定に不可欠である薬物発見や材料科学などの領域で広く適用可能である。
論文 参考訳(メタデータ) (2023-07-19T20:03:42Z) - ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural
Networks via Normalization [80.90206641975375]
本稿では,正規化によるGNNの性能向上に焦点をあてる。
グラフ中のノード次数の長期分布を調べることにより、GNNの新しい正規化法を提案する。
ResNormの$scale$操作は、尾ノードの精度を向上させるために、ノード単位の標準偏差(NStd)分布を再設定する。
論文 参考訳(メタデータ) (2022-06-16T13:49:09Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
グラフニューラルネットワーク(GNN)は、グラフおよびリレーショナルデータにディープネットワークアーキテクチャを適用する手段として登場した。
本論文では,既存の作業に基づいて,GNN近傍サンプリングをマルチアームバンディット問題として扱う。
そこで本研究では,分散を低減し,不安定かつ非限定的な支払いを回避すべく設計されたバイアスをある程度導入した報酬関数を提案する。
論文 参考訳(メタデータ) (2021-03-01T15:55:58Z) - Uncertainty-Matching Graph Neural Networks to Defend Against Poisoning
Attacks [43.60973654460398]
グラフニューラルネットワーク(GNN)は、ニューラルネットワークからグラフ構造化データへの一般化である。
GNNは敵の攻撃に弱い、すなわち、構造に対する小さな摂動は、非自明な性能劣化を引き起こす可能性がある。
本稿では,GNNモデルの堅牢性向上を目的とした不確実性マッチングGNN(UM-GNN)を提案する。
論文 参考訳(メタデータ) (2020-09-30T05:29:42Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。