論文の概要: Evidential Uncertainty Probes for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2503.08097v1
- Date: Tue, 11 Mar 2025 07:00:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:42:02.921149
- Title: Evidential Uncertainty Probes for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのための証拠不確かさプローブ
- Authors: Linlin Yu, Kangshuo Li, Pritom Kumar Saha, Yifei Lou, Feng Chen,
- Abstract要約: グラフニューラルネットワーク(GNN)における不確実性定量化のためのプラグアンドプレイフレームワークを提案する。
Evidential Probing Network (EPN) は、学習した表現から証拠を抽出するために軽量なMulti-Layer-Perceptron (MLP) ヘッドを使用する。
EPN-regは、正確で効率的な不確実性定量化において最先端のパフォーマンスを実現し、現実世界のデプロイメントに適している。
- 参考スコア(独自算出の注目度): 3.5169632430086315
- License:
- Abstract: Accurate quantification of both aleatoric and epistemic uncertainties is essential when deploying Graph Neural Networks (GNNs) in high-stakes applications such as drug discovery and financial fraud detection, where reliable predictions are critical. Although Evidential Deep Learning (EDL) efficiently quantifies uncertainty using a Dirichlet distribution over predictive probabilities, existing EDL-based GNN (EGNN) models require modifications to the network architecture and retraining, failing to take advantage of pre-trained models. We propose a plug-and-play framework for uncertainty quantification in GNNs that works with pre-trained models without the need for retraining. Our Evidential Probing Network (EPN) uses a lightweight Multi-Layer-Perceptron (MLP) head to extract evidence from learned representations, allowing efficient integration with various GNN architectures. We further introduce evidence-based regularization techniques, referred to as EPN-reg, to enhance the estimation of epistemic uncertainty with theoretical justifications. Extensive experiments demonstrate that the proposed EPN-reg achieves state-of-the-art performance in accurate and efficient uncertainty quantification, making it suitable for real-world deployment.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)を薬物発見や金融詐欺検出などの高精細な応用にデプロイする場合、信頼性の高い予測が重要となる場合、アレタリックおよびてんかんの不確実性の正確な定量化が不可欠である。
Evidential Deep Learning (EDL) は予測確率よりもディリクレ分布を用いて効率よく不確実性を定量化するが、既存のEDLベースのGNN(EGNN)モデルはネットワークアーキテクチャの変更と再訓練を必要とし、事前訓練されたモデルの活用に失敗した。
本稿では,GNNにおける不確実性定量化のためのプラグイン・アンド・プレイ・フレームワークを提案する。
Evidential Probing Network (EPN)は、学習した表現からエビデンスを抽出するために、軽量なMulti-Layer-Perceptron (MLP) ヘッドを使用しており、様々なGNNアーキテクチャとの効率的な統合を可能にしている。
さらに、EPN-regと呼ばれるエビデンスに基づく正規化手法を導入し、理論的正当性によるてんかんの不確実性の推定を強化する。
大規模な実験により、EPN-regは正確で効率的な不確実性定量化において最先端の性能を達成することが示され、現実世界の展開に適している。
関連論文リスト
- Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
我々は,PE-GNN,Quantile Neural Networks,および再校正技術を完全非パラメトリックフレームワークに統合する新しい手法である,位置グラフ量子ニューラルネットワーク(PE-GQNN)を紹介する。
ベンチマークデータセットの実験では、PE-GQNNは予測精度と不確実性の定量化の両方で既存の最先端手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-09-27T16:02:12Z) - Uncertainty in Graph Neural Networks: A Survey [47.785948021510535]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Accurate and Scalable Estimation of Epistemic Uncertainty for Graph Neural Networks [38.17680286557666]
固有GNNの不確実性推定を改善するための新しいトレーニングフレームワークを提案する。
我々のフレームワークは、新しいグラフアンカー戦略を通じて、データをグラフデータに中心付けるという原則に適応する。
本研究は,GNNの不確実性推定に関する知見を提供し,信頼度推定におけるG-$Delta$UQの有用性を実証する。
論文 参考訳(メタデータ) (2024-01-07T00:58:33Z) - Uncertainty Quantification in Multivariable Regression for Material Property Prediction with Bayesian Neural Networks [37.69303106863453]
物理インフォームドBNNにおける不確実性定量化(UQ)のアプローチを提案する。
本稿では, 鋼のクリープ破断寿命を予測するためのケーススタディを提案する。
クリープ寿命予測の最も有望なフレームワークは、マルコフ・チェイン・モンテカルロによるネットワークパラメータの後方分布の近似に基づくBNNである。
論文 参考訳(メタデータ) (2023-11-04T19:40:16Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - CARE: Certifiably Robust Learning with Reasoning via Variational
Inference [26.210129662748862]
推論パイプライン(CARE)を用いた頑健な学習を提案する。
CAREは、最先端のベースラインに比べて、かなり高い信頼性のロバスト性を達成する。
さらに,CAREの実証的ロバスト性および知識統合の有効性を示すために,異なるアブレーション研究を行った。
論文 参考訳(メタデータ) (2022-09-12T07:15:52Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Sketching Curvature for Efficient Out-of-Distribution Detection for Deep
Neural Networks [32.629801680158685]
Sketching Curvature of OoD Detection (SCOD)は、訓練されたディープニューラルネットワークにタスク関連不確実性推定を装備するためのアーキテクチャに依存しないフレームワークである。
SCODは,既存のベースラインと比較して計算負担の少ないOoD検出性能の同等あるいは優れたOoD検出性能を達成できることを実証する。
論文 参考訳(メタデータ) (2021-02-24T21:34:40Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
グラフニューラルネットワーク(GNN)における適応接続サンプリングのための統一的なフレームワークを提案する。
提案フレームワークは,深部GNNの過度なスムース化や過度に適合する傾向を緩和するだけでなく,グラフ解析タスクにおけるGNNによる不確実性の学習を可能にする。
論文 参考訳(メタデータ) (2020-06-07T07:06:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。