Ano-SuPs: Multi-size anomaly detection for manufactured products by identifying suspected patches
- URL: http://arxiv.org/abs/2309.11120v2
- Date: Fri, 03 Jan 2025 14:31:04 GMT
- Title: Ano-SuPs: Multi-size anomaly detection for manufactured products by identifying suspected patches
- Authors: Hao Xu, Juan Du, Andi Wang, YingCong Chen,
- Abstract summary: complexity of the image background and various anomaly patterns pose new challenges to existing matrix decomposition methods.<n>We propose a two-stage strategy anomaly detection method that detects anomalies by identifying suspected patches.
- Score: 20.237984525038108
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based systems have gained popularity owing to their capacity to provide rich manufacturing status information, low implementation costs and high acquisition rates. However, the complexity of the image background and various anomaly patterns pose new challenges to existing matrix decomposition methods, which are inadequate for modeling requirements. Moreover, the uncertainty of the anomaly can cause anomaly contamination problems, making the designed model and method highly susceptible to external disturbances. To address these challenges, we propose a two-stage strategy anomaly detection method that detects anomalies by identifying suspected patches (Ano-SuPs). Specifically, we propose to detect the patches with anomalies by reconstructing the input image twice: the first step is to obtain a set of normal patches by removing those suspected patches, and the second step is to use those normal patches to refine the identification of the patches with anomalies. To demonstrate its effectiveness, we evaluate the proposed method systematically through simulation experiments and case studies. We further identified the key parameters and designed steps that impact the model's performance and efficiency.
Related papers
- PA-CLIP: Enhancing Zero-Shot Anomaly Detection through Pseudo-Anomaly Awareness [10.364634539199422]
We introduce PA-CLIP, a zero-shot anomaly detection method that reduces background noise and enhances defect detection through a pseudo-anomaly-based framework.
The proposed method integrates a multiscale feature aggregation strategy for capturing detailed global and local information.
It outperforms existing zero-shot methods, providing a robust solution for industrial defect detection.
arXiv Detail & Related papers (2025-03-03T08:29:27Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - DualAnoDiff: Dual-Interrelated Diffusion Model for Few-Shot Anomaly Image Generation [40.257604426546216]
The performance of anomaly inspection in industrial manufacturing is constrained by the scarcity of anomaly data.
Existing anomaly generation methods suffer from limited diversity in the generated anomalies.
We propose DualAnoDiff, a novel diffusion-based few-shot anomaly image generation model.
arXiv Detail & Related papers (2024-08-24T08:09:32Z) - Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
We propose a method to detect anomalies by analysis of reconstruction trend depending on the degree of degradation.
The proposed method is validated on an open dataset for industrial anomaly detection.
arXiv Detail & Related papers (2024-07-12T01:50:07Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
We propose a novel saliency-guided data augmentation method, SaliencyCut, to produce pseudo but more common anomalies.
We then design a novel patch-wise residual module in the anomaly learning head to extract and assess the fine-grained anomaly features from each sample.
arXiv Detail & Related papers (2023-06-14T08:55:36Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.