PA-CLIP: Enhancing Zero-Shot Anomaly Detection through Pseudo-Anomaly Awareness
- URL: http://arxiv.org/abs/2503.01292v1
- Date: Mon, 03 Mar 2025 08:29:27 GMT
- Title: PA-CLIP: Enhancing Zero-Shot Anomaly Detection through Pseudo-Anomaly Awareness
- Authors: Yurui Pan, Lidong Wang, Yuchao Chen, Wenbing Zhu, Bo Peng, Mingmin Chi,
- Abstract summary: We introduce PA-CLIP, a zero-shot anomaly detection method that reduces background noise and enhances defect detection through a pseudo-anomaly-based framework.<n>The proposed method integrates a multiscale feature aggregation strategy for capturing detailed global and local information.<n>It outperforms existing zero-shot methods, providing a robust solution for industrial defect detection.
- Score: 10.364634539199422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In industrial anomaly detection (IAD), accurately identifying defects amidst diverse anomalies and under varying imaging conditions remains a significant challenge. Traditional approaches often struggle with high false-positive rates, frequently misclassifying normal shadows and surface deformations as defects, an issue that becomes particularly pronounced in products with complex and intricate surface features. To address these challenges, we introduce PA-CLIP, a zero-shot anomaly detection method that reduces background noise and enhances defect detection through a pseudo-anomaly-based framework. The proposed method integrates a multiscale feature aggregation strategy for capturing detailed global and local information, two memory banks for distinguishing background information, including normal patterns and pseudo-anomalies, from true anomaly features, and a decision-making module designed to minimize false positives caused by environmental variations while maintaining high defect sensitivity. Demonstrated on the MVTec AD and VisA datasets, PA-CLIP outperforms existing zero-shot methods, providing a robust solution for industrial defect detection.
Related papers
- Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.
We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.
Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - MultiADS: Defect-aware Supervision for Multi-type Anomaly Detection and Segmentation in Zero-Shot Learning [27.235318937019255]
It is crucial to know the distinct type of defect, such as a bent, cut, or scratch.
The ability to recognize the "exact" defect type enables automated treatments of the anomalies in modern production lines.
We propose MultiADS, a zero-shot learning approach, able to perform Multi-type Anomaly Detection.
arXiv Detail & Related papers (2025-04-09T09:52:04Z) - Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Ano-SuPs: Multi-size anomaly detection for manufactured products by identifying suspected patches [20.237984525038108]
complexity of the image background and various anomaly patterns pose new challenges to existing matrix decomposition methods.<n>We propose a two-stage strategy anomaly detection method that detects anomalies by identifying suspected patches.
arXiv Detail & Related papers (2023-09-20T08:07:14Z) - Harnessing Contrastive Learning and Neural Transformation for Time Series Anomaly Detection [0.0]
Time series anomaly detection (TSAD) plays a vital role in many industrial applications.<n>Contrastive learning has gained momentum in the time series domain for its prowess in extracting meaningful representations from unlabeled data.<n>In this study, we propose a novel approach, CNT, that incorporates a window-based contrastive learning strategy fortified with learnable transformations.
arXiv Detail & Related papers (2023-04-16T21:36:19Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Reference-Based Autoencoder for Surface Defect Detection [7.163582730053925]
We propose a novel unsupervised reference-based autoencoder (RB-AE) to accurately inspect a variety of textured defects.
artificial defects and a novel pixel-level discrimination loss function are utilized for training to enable the model to obtain pixel-level discrimination ability.
arXiv Detail & Related papers (2022-11-18T07:13:55Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.