DualAnoDiff: Dual-Interrelated Diffusion Model for Few-Shot Anomaly Image Generation
- URL: http://arxiv.org/abs/2408.13509v2
- Date: Wed, 28 Aug 2024 06:53:46 GMT
- Title: DualAnoDiff: Dual-Interrelated Diffusion Model for Few-Shot Anomaly Image Generation
- Authors: Ying Jin, Jinlong Peng, Qingdong He, Teng Hu, Hao Chen, Jiafu Wu, Wenbing Zhu, Mingmin Chi, Jun Liu, Yabiao Wang, Chengjie Wang,
- Abstract summary: The performance of anomaly inspection in industrial manufacturing is constrained by the scarcity of anomaly data.
Existing anomaly generation methods suffer from limited diversity in the generated anomalies.
We propose DualAnoDiff, a novel diffusion-based few-shot anomaly image generation model.
- Score: 40.257604426546216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of anomaly inspection in industrial manufacturing is constrained by the scarcity of anomaly data. To overcome this challenge, researchers have started employing anomaly generation approaches to augment the anomaly dataset. However, existing anomaly generation methods suffer from limited diversity in the generated anomalies and struggle to achieve a seamless blending of this anomaly with the original image. In this paper, we overcome these challenges from a new perspective, simultaneously generating a pair of the overall image and the corresponding anomaly part. We propose DualAnoDiff, a novel diffusion-based few-shot anomaly image generation model, which can generate diverse and realistic anomaly images by using a dual-interrelated diffusion model, where one of them is employed to generate the whole image while the other one generates the anomaly part. Moreover, we extract background and shape information to mitigate the distortion and blurriness phenomenon in few-shot image generation. Extensive experiments demonstrate the superiority of our proposed model over state-of-the-art methods in terms of both realism and diversity. Overall, our approach significantly improves the performance of downstream anomaly detection tasks, including anomaly detection, anomaly localization, and anomaly classification tasks.
Related papers
- Enhancing Multi-Class Anomaly Detection via Diffusion Refinement with Dual Conditioning [30.4548093767138]
One-model-per-category methods often struggle with limited generalization capabilities.
Recent feature reconstruction methods, as representatives in one-model-all-categories schemes, face challenges including reconstructing anomalous samples and blurry reconstructions.
This paper creatively combines a diffusion model and a transformer for multi-class anomaly detection.
arXiv Detail & Related papers (2024-07-02T03:09:40Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
We propose a novel saliency-guided data augmentation method, SaliencyCut, to produce pseudo but more common anomalies.
We then design a novel patch-wise residual module in the anomaly learning head to extract and assess the fine-grained anomaly features from each sample.
arXiv Detail & Related papers (2023-06-14T08:55:36Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - Unsupervised Two-Stage Anomaly Detection [18.045265572566276]
Anomaly detection from a single image is challenging since anomaly data is always rare and can be with highly unpredictable types.
We propose a two-stage approach, which generates high-fidelity yet anomaly-free reconstructions.
Our method outperforms state-of-the-arts on four anomaly detection datasets.
arXiv Detail & Related papers (2021-03-22T08:57:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.