論文の概要: CoT-BERT: Enhancing Unsupervised Sentence Representation through
Chain-of-Thought
- arxiv url: http://arxiv.org/abs/2309.11143v1
- Date: Wed, 20 Sep 2023 08:42:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 12:56:55.785223
- Title: CoT-BERT: Enhancing Unsupervised Sentence Representation through
Chain-of-Thought
- Title(参考訳): CoT-BERT:Chain-of-Thoughtによる教師なし文表現の強化
- Authors: Bowen Zhang, Kehua Chang, Chunping Li
- Abstract要約: 教師なし文表現学習は、入力文を複雑な意味情報に富んだ固定長ベクトルに変換することを目的としている。
本稿では,文表現の理解と要約という2段階のアプローチを提案する。
さらなる性能向上のために、我々は、対照的な学習損失関数と、プロンプトエンジニアリングのためのテンプレート認知技術の両方を慎重に洗練する。
- 参考スコア(独自算出の注目度): 3.435381469869212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised sentence representation learning aims to transform input
sentences into fixed-length vectors enriched with intricate semantic
information while obviating the reliance on labeled data. Recent progress
within this field, propelled by contrastive learning and prompt engineering,
has significantly bridged the gap between unsupervised and supervised
strategies. Nonetheless, the potential utilization of Chain-of-Thought, remains
largely untapped within this trajectory. To unlock latent capabilities within
pre-trained models, such as BERT, we propose a two-stage approach for sentence
representation: comprehension and summarization. Subsequently, the output of
the latter phase is harnessed as the vectorized representation of the input
sentence. For further performance enhancement, we meticulously refine both the
contrastive learning loss function and the template denoising technique for
prompt engineering. Rigorous experimentation substantiates our method,
CoT-BERT, transcending a suite of robust baselines without necessitating other
text representation models or external databases.
- Abstract(参考訳): 教師なし文表現学習は、ラベル付きデータへの依存を回避しつつ、複雑な意味情報に富んだ入力文を固定長ベクトルに変換することを目的としている。
コントラスト学習とプロンプトエンジニアリングによって推進されたこの分野の最近の進歩は、教師なし戦略と教師なし戦略のギャップを大幅に埋めている。
それでも、この軌道にはチェイン・オブ・サートの利用の可能性はほとんど残っていない。
BERTのような事前学習モデルにおける潜在能力を解き明かすために,文表現のための2段階のアプローチを提案する。
その後、後者の位相の出力を入力文のベクトル化表現として利用する。
さらなる性能向上のために,コントラスト学習損失関数とテンプレート記述手法の両方を細心の注意を払って改良した。
厳密な実験は、我々の方法であるCoT-BERTを、他のテキスト表現モデルや外部データベースを必要とせずに、頑健なベースラインを超越する。
関連論文リスト
- Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
CoT(Chain-of-Thought)の促進とその変種は、多段階推論問題を解決する効果的な方法として人気を集めている。
統計的推定の観点からCoTのプロンプトを解析し,その複雑さを包括的に評価する。
論文 参考訳(メタデータ) (2024-08-25T04:07:18Z) - Reconsidering Degeneration of Token Embeddings with Definitions for Encoder-based Pre-trained Language Models [20.107727903240065]
本研究では,エンコーダに基づく言語モデルのための等方的および意味論的トークン埋め込みを再構築するために,DefindEMBを提案する。
本実験は,Wiktionaryの定義を応用し,そのような埋め込みを再構築する効果を実証する。
論文 参考訳(メタデータ) (2024-08-02T15:00:05Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
前回の研究であるRefTeacherは、疑似自信と注意に基づく監督を提供するために教師学生の枠組みを採用することで、この課題に取り組むための最初の試みである。
このアプローチは、Transformerベースのパイプラインに従う現在の最先端のビジュアルグラウンドモデルと互換性がない。
本稿では, ACTRESS を略したセミスーパービジョン視覚グラウンドのためのアクティブ・リトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T16:33:31Z) - Advancing Semantic Textual Similarity Modeling: A Regression Framework with Translated ReLU and Smooth K2 Loss [3.435381469869212]
本稿では,Sentence-BERT STSタスクのための革新的な回帰フレームワークを提案する。
これは2つの単純で効果的な損失関数、Translated ReLUとSmooth K2 Lossを提案する。
実験結果から,本手法は7つのSTSベンチマークにおいて有意な性能を達成できることが示された。
論文 参考訳(メタデータ) (2024-06-08T02:52:43Z) - Understanding Self-Supervised Learning of Speech Representation via
Invariance and Redundancy Reduction [0.45060992929802207]
自己教師付き学習(SSL)は、ラベルのないデータから柔軟な音声表現を学習するための有望なパラダイムとして登場した。
本研究は,人間の知覚における冗長性低下の理論に触発されたSSL技術であるBarlow Twins(BT)を実証分析した。
論文 参考訳(メタデータ) (2023-09-07T10:23:59Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
本研究では, 突発的相関を除去し, 安定した予測を行うために, インプリシト・カウンセショナル・データ拡張法を提案する。
画像とテキストのデータセットをカバーする様々なバイアス付き学習シナリオで実験が行われてきた。
論文 参考訳(メタデータ) (2023-04-26T10:36:40Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Robust Dialogue State Tracking with Weak Supervision and Sparse Data [2.580163308334609]
対話状態追跡(DST)を新しいデータに一般化することは、トレーニング中の豊富なきめ細かい監督に依存しているため困難である。
サンプルの間隔、分布シフト、新しい概念やトピックの発生は、しばしば推論中に深刻なパフォーマンス劣化を引き起こす。
そこで本研究では,詳細な手動スパンラベルを必要とせず,抽出DSTモデルを構築するためのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T16:58:12Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
補助モデルと付加データなしで問題を解くための学習パラダイムとして,ノイズエントロピー正規化(NoiER)を提案する。
提案手法は,従来の微調整モデルと比較して平均55%改善した。
論文 参考訳(メタデータ) (2021-08-29T06:58:28Z) - On Long-Tailed Phenomena in Neural Machine Translation [50.65273145888896]
最先端のニューラルネットワーク翻訳(NMT)モデルは、低周波トークンの生成に苦労する。
条件付きテキスト生成における構造的依存関係にモデルトレーニングを適応させるために,新たな損失関数である反焦点損失を提案する。
提案手法は,複数の機械翻訳(MT)データセットに対して有効であり,クロスエントロピーよりも顕著に向上することを示す。
論文 参考訳(メタデータ) (2020-10-10T07:00:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。